325 research outputs found

    Radon and material radiopurity assessment for the NEXT double beta decay experiment

    Full text link
    The Neutrino Experiment with a Xenon TPC (NEXT), intended to investigate the neutrinoless double beta decay using a high-pressure xenon gas TPC filled with Xe enriched in 136Xe at the Canfranc Underground Laboratory in Spain, requires ultra-low background conditions demanding an exhaustive control of material radiopurity and environmental radon levels. An extensive material screening process is underway for several years based mainly on gamma-ray spectroscopy using ultra-low background germanium detectors in Canfranc but also on mass spectrometry techniques like GDMS and ICPMS. Components from shielding, pressure vessel, electroluminescence and high voltage elements and energy and tracking readout planes have been analyzed, helping in the final design of the experiment and in the construction of the background model. The latest measurements carried out will be presented and the implication on NEXT of their results will be discussed. The commissioning of the NEW detector, as a first step towards NEXT, has started in Canfranc; in-situ measurements of airborne radon levels were taken there to optimize the system for radon mitigation and will be shown too.Comment: Proceedings of the Low Radioactivity Techniques 2015 workshop (LRT2015), Seattle, March 201

    Ultra low background Micromegas detectors for BabyIAXO solar axion search

    Full text link
    The International AXion Observatory (IAXO) is a large scale axion helioscope that will look for axions and axion-like particles produced in the Sun with unprecedented sensitivity. BabyIAXO is an intermediate experimental stage that will be hosted at DESY (Germany) and that will test all IAXO subsystems serving as a prototype for IAXO but at the same time as a fully-fledged helioscope with potential for discovery. One of the crucial components of the project is the ultra-low background X-ray detectors that will image the X-ray photons produced by axion conversion in the experiment. The baseline detection technology for this purpose are Micromegas (Microbulk) detectors. We will show the quest and the strategy to attain the very challenging levels of background targeted for BabyIAXO that need a multi-approach strategy coming from ground measurements, screening campaigns of components of the detector, underground measurements, background models, in-situ background measurements as well as powerful rejection algorithms. First results from the commissioning of the BabyIAXO prototype will be shown.Comment: 4 pages, 2 figures, submitted for the proceedings of the International Conference on Micro Pattern Gaseous Detectors, December 2022, Israe

    Tweeting about sexism motivates further activism: A social identity perspective

    Get PDF
    Women, more so than men, are using social media activism to respond to sexism. However, when they do, they are also faced with gendered criticisms (\u27hashtag feminism\u27) that may instead serve to silence them. Based in social identity theory, this research examined how women\u27s social media activism, in response to sexism, may be a first step toward further activism. Two studies used a simulated Twitter paradigm to expose women to sexism and randomly assigned them to either tweet in response, or to a no-tweet control condition. Both studies found support for a serial mediation model such that tweeting after sexism strengthened social identity, which in turn increased collective action intentions, and in turn, behavioural collective actions. Study 2 further showed that validation from others increases the indirect effect of tweeting on behavioural collective action through collective action intentions, but group efficacy did not moderate any indirect effects. It was concluded that when social media activism in response to sexism promotes an enactment of women’s social identity, thereby mobilizing them to further action

    Black Girls Speak STEM: Counterstories of Informal and Formal Learning Experiences

    Get PDF
    This study presents the interpretations and perceptions of Black girls who participated in I AM STEM – a community-based informal science, technology, engineering, and mathematics (STEM) program. Using narrative inquiry, participants generated detailed accounts of their informal and formal STEM learning experiences. Critical race methodology informed this research to portray the dynamic and complex experiences of girls of color, whose stories have historically been silenced and misrepresented. The data sources for this qualitative study included individual interviews, student reflection journals, samples of student work, and researcher memos, which were triangulated to produce six robust counterstories. Excerpts of the counterstories are presented in this article. The major findings of this research revealed that I AM STEM ignited an interest in STEM learning through field trips and direct engagement in scientific phenomena that allowed the girls to become agentic in continuing their engagement in STEM activities throughout the year. This call to awaken the voices of Black girls to speak casts light on their experiences and challenges as STEM learners ⎯ from their perspectives. The findings confirm that when credence and counterspaces are given to Black girls, they are poised to reveal their luster toward STEM learning. This study provided a space for Black girls to reflect on their STEM learning experiences, formulate new understandings, and make connections between the informal and formal learning environments within the context of their everyday lives, thus offering a more holistic approach to STEM learning that occurs across settings and over a lifetime

    Physics potential of the International Axion Observatory (IAXO)

    Get PDF
    We review the physics potential of a next generation search for solar axions:the International Axion Observatory (IAXO). Endowed with a sensitivity todiscover axion-like particles (ALPs) with a coupling to photons as small asgaγ1012g_{a\gamma}\sim 10^{-12} GeV1^{-1}, or to electrons gaeg_{ae}\sim1013^{-13},IAXO has the potential to find the QCD axion in the 1 meV\sim1 eV mass rangewhere it solves the strong CP problem, can account for the cold dark matter ofthe Universe and be responsible for the anomalous cooling observed in a numberof stellar systems. At the same time, IAXO will have enough sensitivity todetect lower mass axions invoked to explain: 1) the origin of the anomalous"transparency" of the Universe to gamma-rays, 2) the observed soft X-ray excessfrom galaxy clusters or 3) some inflationary models. In addition, we reviewstring theory axions with parameters accessible by IAXO and discuss theirpotential role in cosmology as Dark Matter and Dark Radiation as well as theirconnections to the above mentioned conundrums

    Directionality of nuclear recoils in a liquid argon time projection chamber

    Full text link
    The direct search for dark matter in the form of weakly interacting massive particles (WIMP) is performed by detecting nuclear recoils (NR) produced in a target material from the WIMP elastic scattering. A promising experimental strategy for direct dark matter search employs argon dual-phase time projection chambers (TPC). One of the advantages of the TPC is the capability to detect both the scintillation and charge signals produced by NRs. Furthermore, the existence of a drift electric field in the TPC breaks the rotational symmetry: the angle between the drift field and the momentum of the recoiling nucleus can potentially affect the charge recombination probability in liquid argon and then the relative balance between the two signal channels. This fact could make the detector sensitive to the directionality of the WIMP-induced signal, enabling unmistakable annual and daily modulation signatures for future searches aiming for discovery. The Recoil Directionality (ReD) experiment was designed to probe for such directional sensitivity. The TPC of ReD was irradiated with neutrons at the INFN Laboratori Nazionali del Sud, and data were taken with 72 keV NRs of known recoil directions. The direction-dependent liquid argon charge recombination model by Cataudella et al. was adopted and a likelihood statistical analysis was performed, which gave no indications of significant dependence of the detector response to the recoil direction. The aspect ratio R of the initial ionization cloud is estimated to be 1.037 +/- 0.027 and the upper limit is R < 1.072 with 90% confidence levelComment: 20 pages, 10 figures, submitted to Eur. Phys. J.
    corecore