344 research outputs found

    Simultaneous Graph Embeddings with Fixed Edges

    Get PDF
    We study the problem of simultaneously embedding several graphs on the same vertex set in such a way that edges common to two or more graphs are represented by the same curve. This problem is known as simultaneously embedding graphs with fixed edges. We show that this problem is closely related to the weak realizability problem: Can a graph be drawn such that all edge crossings occur in a given set of edge pairs? By exploiting this relationship we can explain why the simultaneous embedding problem is challenging, both from a computational and a combinatorial point of view. More precisely, we prove that simultaneously embedding graphs with fixed edges is NP-complete even for three planar graphs. For two planar graphs the complexity status is still open

    Simultaneous Graph Embeddings with Fixed Edges

    Get PDF
    We study the problem of simultaneously embedding several graphs on the same vertex set in such a way that edges common to two or more graphs are represented by the same curve. This problem is known as simultaneously embedding graphs with fixed edges. We show that this problem is closely related to the weak realizability problem: Can a graph be drawn such that all edge crossings occur in a given set of edge pairs? By exploiting this relationship we can explain why the simultaneous embedding problem is challenging, both from a computational and a combinatorial point of view. More precisely, we prove that simultaneously embedding graphs with fixed edges is NP-complete even for three planar graphs. For two planar graphs the complexity status is still open

    Optimality program in segment and string graphs

    Full text link
    Planar graphs are known to allow subexponential algorithms running in time 2O(n)2^{O(\sqrt n)} or 2O(nlogn)2^{O(\sqrt n \log n)} for most of the paradigmatic problems, while the brute-force time 2Θ(n)2^{\Theta(n)} is very likely to be asymptotically best on general graphs. Intrigued by an algorithm packing curves in 2O(n2/3logn)2^{O(n^{2/3}\log n)} by Fox and Pach [SODA'11], we investigate which problems have subexponential algorithms on the intersection graphs of curves (string graphs) or segments (segment intersection graphs) and which problems have no such algorithms under the ETH (Exponential Time Hypothesis). Among our results, we show that, quite surprisingly, 3-Coloring can also be solved in time 2O(n2/3logO(1)n)2^{O(n^{2/3}\log^{O(1)}n)} on string graphs while an algorithm running in time 2o(n)2^{o(n)} for 4-Coloring even on axis-parallel segments (of unbounded length) would disprove the ETH. For 4-Coloring of unit segments, we show a weaker ETH lower bound of 2o(n2/3)2^{o(n^{2/3})} which exploits the celebrated Erd\H{o}s-Szekeres theorem. The subexponential running time also carries over to Min Feedback Vertex Set but not to Min Dominating Set and Min Independent Dominating Set.Comment: 19 pages, 15 figure

    Intersection Graphs of Rays and Grounded Segments

    Get PDF
    We consider several classes of intersection graphs of line segments in the plane and prove new equality and separation results between those classes. In particular, we show that: (1) intersection graphs of grounded segments and intersection graphs of downward rays form the same graph class, (2) not every intersection graph of rays is an intersection graph of downward rays, and (3) not every intersection graph of rays is an outer segment graph. The first result answers an open problem posed by Cabello and Jej\v{c}i\v{c}. The third result confirms a conjecture by Cabello. We thereby completely elucidate the remaining open questions on the containment relations between these classes of segment graphs. We further characterize the complexity of the recognition problems for the classes of outer segment, grounded segment, and ray intersection graphs. We prove that these recognition problems are complete for the existential theory of the reals. This holds even if a 1-string realization is given as additional input.Comment: 16 pages 12 Figure

    On local structures of cubicity 2 graphs

    Full text link
    A 2-stab unit interval graph (2SUIG) is an axes-parallel unit square intersection graph where the unit squares intersect either of the two fixed lines parallel to the XX-axis, distance 1+ϵ1 + \epsilon (0<ϵ<10 < \epsilon < 1) apart. This family of graphs allow us to study local structures of unit square intersection graphs, that is, graphs with cubicity 2. The complexity of determining whether a tree has cubicity 2 is unknown while the graph recognition problem for unit square intersection graph is known to be NP-hard. We present a polynomial time algorithm for recognizing trees that admit a 2SUIG representation

    On the hardness of switching to a small number of edges

    Full text link
    Seidel's switching is a graph operation which makes a given vertex adjacent to precisely those vertices to which it was non-adjacent before, while keeping the rest of the graph unchanged. Two graphs are called switching-equivalent if one can be made isomorphic to the other one by a sequence of switches. Jel\'inkov\'a et al. [DMTCS 13, no. 2, 2011] presented a proof that it is NP-complete to decide if the input graph can be switched to contain at most a given number of edges. There turns out to be a flaw in their proof. We present a correct proof. Furthermore, we prove that the problem remains NP-complete even when restricted to graphs whose density is bounded from above by an arbitrary fixed constant. This partially answers a question of Matou\v{s}ek and Wagner [Discrete Comput. Geom. 52, no. 1, 2014].Comment: 19 pages, 7 figures. An extended abstract submitted to COCOON 201

    Locally constrained homomorphisms on graphs of bounded treewidth and bounded degree.

    Get PDF
    A homomorphism from a graph G to a graph H is locally bijective, surjective, or injective if its restriction to the neighborhood of every vertex of G is bijective, surjective, or injective, respectively. We prove that the problems of testing whether a given graph G allows a homomorphism to a given graph H that is locally bijective, surjective, or injective, respectively, are NP-complete, even when G has pathwidth at most 5, 4 or 2, respectively, or when both G and H have maximum degree 3. We complement these hardness results by showing that the three problems are polynomial-time solvable if G has bounded treewidth and in addition G or H has bounded maximum degree

    On the Recognition of Four-Directional Orthogonal Ray Graphs

    Get PDF
    Orthogonal ray graphs are the intersection graphs of horizontal and vertical rays (i.e. half-lines) in the plane. If the rays can have any possible orientation (left/right/up/down) then the graph is a 4-directional orthogonal ray graph (4-DORG). Otherwise, if all rays are only pointing into the positive x and y directions, the intersection graph is a 2-DORG. Similarly, for 3-DORGs, the horizontal rays can have any direction but the vertical ones can only have the positive direction. The recognition problem of 2-DORGs, which are a nice subclass of bipartite comparability graphs, is known to be polynomial, while the recognition problems for 3-DORGs and 4-DORGs are open. Recently it has been shown that the recognition of unit grid intersection graphs, a superclass of 4-DORGs, is NP-complete. In this paper we prove that the recognition problem of 4-DORGs is polynomial, given a partition {L,R,U,D} of the vertices of G (which corresponds to the four possible ray directions). For the proof, given the graph G, we first construct two cliques G 1,G 2 with both directed and undirected edges. Then we successively augment these two graphs, constructing eventually a graph TeX with both directed and undirected edges, such that G has a 4-DORG representation if and only if TeX has a transitive orientation respecting its directed edges. As a crucial tool for our analysis we introduce the notion of an S-orientation of a graph, which extends the notion of a transitive orientation. We expect that our proof ideas will be useful also in other situations. Using an independent approach we show that, given a permutation π of the vertices of U (π is the order of y-coordinates of ray endpoints for U), while the partition {L,R} of V ∖ U is not given, we can still efficiently check whether G has a 3-DORG representation

    Chaos in drive systems

    Get PDF
    The purpose of this article is to provide an elementary introduction to the subject of chaos in the electromechanical drive systems. In this article, we explore chaotic solutions of maps and continuous time systems. These solutions are also bounded like equilibrium, periodic and quasiperiodic solutions

    b-coloring is NP-hard on co-bipartite graphs and polytime solvable on tree-cographs

    Get PDF
    A b-coloring of a graph is a proper coloring such that every color class contains a vertex that is adjacent to all other color classes. The b-chromatic number of a graph G, denoted by \chi_b(G), is the maximum number t such that G admits a b-coloring with t colors. A graph G is called b-continuous if it admits a b-coloring with t colors, for every t = \chi(G),\ldots,\chi_b(G), and b-monotonic if \chi_b(H_1) \geq \chi_b(H_2) for every induced subgraph H_1 of G, and every induced subgraph H_2 of H_1. We investigate the b-chromatic number of graphs with stability number two. These are exactly the complements of triangle-free graphs, thus including all complements of bipartite graphs. The main results of this work are the following: - We characterize the b-colorings of a graph with stability number two in terms of matchings with no augmenting paths of length one or three. We derive that graphs with stability number two are b-continuous and b-monotonic. - We prove that it is NP-complete to decide whether the b-chromatic number of co-bipartite graph is at most a given threshold. - We describe a polynomial time dynamic programming algorithm to compute the b-chromatic number of co-trees. - Extending several previous results, we show that there is a polynomial time dynamic programming algorithm for computing the b-chromatic number of tree-cographs. Moreover, we show that tree-cographs are b-continuous and b-monotonic
    corecore