345 research outputs found

    Sensitivity of CPT Tests with Neutral Mesons

    Get PDF
    The sensitivity of experiments with neutral mesons to possible indirect CPT violation is examined. It is shown that experiments conventionally regarded as equivalent can have CPT reaches differing by orders of magnitude within the framework of a minimal CPT- and Lorentz-violating extension of the standard model.Comment: 4 pages REVTeX, published in Physical Review Letter

    Neutrinos with Lorentz-violating operators of arbitrary dimension

    Get PDF
    The behavior of fermions in the presence of Lorentz and CPT violation is studied. Allowing for operators of any mass dimension, we classify all Lorentz-violating terms in the quadratic Lagrange density for free fermions. The result is adapted to obtain the effective hamiltonian describing the propagation and mixing of three flavors of left-handed neutrinos in the presence of Lorentz violation involving operators of arbitrary mass dimension. A characterization of the neutrino coefficients for Lorentz violation is provided via a decomposition using spin-weighted spherical harmonics. The restriction of the general theory to various special cases is discussed, including among others the renormalizable limit, the massless scenario, flavor-blind and oscillation-free models, the diagonalizable case, and several isotropic limits. The formalism is combined with existing data on neutrino oscillations and kinematics to extract a variety of measures of coefficients for Lorentz and CPT violation. For oscillations, we use results from the short-baseline experiments LSND and MiniBooNE to obtain explicit sensitivities to effects from flavor-mixing Lorentz-violating operators up to mass dimension 10, and we present methods to analyze data from long-baseline experiments. For propagation, we use time-of-flight measurements from the supernova SN1987A and from a variety of experiments including MINOS and OPERA to constrain oscillation-free Lorentz-violating operators up to mass dimension 10, and we discuss constraints from threshold effects in meson decays and Cherenkov emission.Comment: 35 pages two-column REVTe

    Testing Lorentz and CPT symmetry with hydrogen masers

    Full text link
    We present details from a recent test of Lorentz and CPT symmetry using hydrogen masers. We have placed a new limit on Lorentz and CPT violation of the proton in terms of a recent standard model extension by placing a bound on sidereal variation of the F = 1 Zeeman frequency in hydrogen. Here, the theoretical standard model extension is reviewed. The operating principles of the maser and the double resonance technique used to measure the Zeeman frequency are discussed. The characterization of systematic effects is described, and the method of data analysis is presented. We compare our result to other recent experiments, and discuss potential steps to improve our measurement.Comment: 26 pages, 16 figure

    Stability, Causality, and Lorentz and CPT Violation

    Get PDF
    Stability and causality are investigated for quantum field theories incorporating Lorentz and CPT violation. Explicit calculations in the quadratic sector of a general renormalizable lagrangian for a massive fermion reveal that no difficulty arises for low energies if the parameters controlling the breaking are small, but for high energies either energy positivity or microcausality is violated in some observer frame. However, this can be avoided if the lagrangian is the sub-Planck limit of a nonlocal theory with spontaneous Lorentz and CPT violation. Our analysis supports the stability and causality of the Lorentz- and CPT-violating standard-model extension that would emerge at low energies from spontaneous breaking in a realistic string theory.Comment: 20 pages, accepted for publication in Physical Review

    CPT Violation, Strings, and Neutral-Meson Systems

    Get PDF
    This talk provides a short overview of recent results on possible CPT violation and some associated experimental signatures.Comment: Presented at Orbis Scientiae, January 199

    Probing Lorentz and CPT violation with space-based experiments

    Get PDF
    Space-based experiments offer sensitivity to numerous unmeasured effects involving Lorentz and CPT violation. We provide a classification of clock sensitivities and present explicit expressions for time variations arising in such experiments from nonzero coefficients in the Lorentz- and CPT-violating Standard-Model Extension.Comment: 15 page

    Supersymmetry and Lorentz Violation

    Get PDF
    Supersymmetric field theories can be constructed that violate Lorentz and CPT symmetry. We illustrate this with some simple examples related to the original Wess-Zumino model.Comment: 4 page

    Tests of Lorentz and CPT symmetry with hadrons and nuclei

    Get PDF
    We apply chiral-perturbation-theory techniques to the QCD sector of the Lorentz and CPT violating standard-model extension. We derive the effective Lagrangian in terms of pions and nucleons for a selected set of dimension-five operators involving quarks and gluons. This derivation is based on chiral-symmetry properties of the operators, as well as on their behaviour under C,P, and T transformations. We consider the power counting rules and apply the heavy-baryon approach to account for the large nucleon mass. Having obtained the relevant Lorentz-violating contributions to the pion-nucleon Lagrangian, we proceed to derive the particle and anti-particle Hamiltonian, from which we obtain the Lorentz-violating contribution to comagnetometer experiments. This allows us to place stringent limits on some of the parameters. For some other parameters we find that the best bounds will come from nucleon nucleon interactions, and we derive the relevant nucleon-nucleon potential. These considerations imply possible new opportunities for spin-precession experiments involving for example the deuteron.Portuguese Foundation for Science and Technology (FCT) [SFRH/BPD/101403/2014]; program POPH/FS
    corecore