The behavior of fermions in the presence of Lorentz and CPT violation is
studied. Allowing for operators of any mass dimension, we classify all
Lorentz-violating terms in the quadratic Lagrange density for free fermions.
The result is adapted to obtain the effective hamiltonian describing the
propagation and mixing of three flavors of left-handed neutrinos in the
presence of Lorentz violation involving operators of arbitrary mass dimension.
A characterization of the neutrino coefficients for Lorentz violation is
provided via a decomposition using spin-weighted spherical harmonics. The
restriction of the general theory to various special cases is discussed,
including among others the renormalizable limit, the massless scenario,
flavor-blind and oscillation-free models, the diagonalizable case, and several
isotropic limits. The formalism is combined with existing data on neutrino
oscillations and kinematics to extract a variety of measures of coefficients
for Lorentz and CPT violation. For oscillations, we use results from the
short-baseline experiments LSND and MiniBooNE to obtain explicit sensitivities
to effects from flavor-mixing Lorentz-violating operators up to mass dimension
10, and we present methods to analyze data from long-baseline experiments. For
propagation, we use time-of-flight measurements from the supernova SN1987A and
from a variety of experiments including MINOS and OPERA to constrain
oscillation-free Lorentz-violating operators up to mass dimension 10, and we
discuss constraints from threshold effects in meson decays and Cherenkov
emission.Comment: 35 pages two-column REVTe