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Stability and causality are investigated for quantum field theories incorporating Loren@Rihdiolation.
Explicit calculations in the quadratic sector of a general renormalizable Lagrangian for a massive fermion
reveal that no difficulty arises for low energies if the parameters controlling the breaking are small, but for high
energies either energy positivity or microcausality is violated in some observer frame. However, this can be
avoided if the Lagrangian is the sub-Planck limit of a nonlocal theory with spontaneous Loren&Rahd
violation. Our analysis supports the stability and causality of the LorentzCah@violating standard-model
extension that would emerge at low energies from spontaneous breaking in a realistic string theory.
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I. INTRODUCTION The present work is motivated by the development over
the past decade of a framework allowing for Lorentz and
Common folklore holds that the low-energy limit of any CPT violation within realistic models. The basic idea is that
fundamental theory at the Planck scale is necessarily a locapontaneous Lorentz violation could occur in an underlying
relativistic quantum field theory. If so, this would make it Lorentz-covariant theory at the Planck scg3& Under cer-
difficult to identify experiments showing directly any struc- tain circumstances, this would be accompanie®T vio-
tural deviations from usual field theory occurring at thelation. This mechanism appears theoretically viable and is
Planck scale, such as might perhaps be expected in stringotivated in part by the demonstration that spontaneous Lor-
theories. However, this folklore is invalid if the fundamental entz andCPT violation can occur in the context of string
theory violates one or more of the basic tenets of relativistidheories with  otherwise Lorentz-covariant dynamics.
field theories. Remnant effects from the Planck scale mightorentz- andC P T-violating effects could therefore provide
then be detectable at low energies, thereby providing valua unique low-energy signature for qualitatively new physics
able experimental information about nature at the smallestom the Planck scale.
scales. At presently accessible energy scales, these ideas lead to a
Lorentz symmetry, stability, and causality are examplephenomenology for Lorentz andPT violation at the level
of features normally expected to hold in physical quantumof the standard model and quantum electrodynar@sD)
field theories. In relativistic field theories, stability and cau-[4]. A general standard-model extension has been developed
sality are closely intertwined with Lorentz invariance. Forthat provides a quantitative microscopic framework for Lor-
example, stability includes the need for energy positivity ofentz andCPT violation [5]. It preserves the usual SU(3)
Fock states of arbitrary momenta, while causality is imple-x SU(2)XU(1) gauge structure and is power-counting
mented microscopically by the requirement that observableeenormalizable. Energy and momentum are conserved, and
commute at spacelike separatigthid Moreover, both energy conventional canonical methods for quantization apply. The
positivity and microcausality are expected to hold in all ob-origin of the Lorentz violation in spontaneous symmetry
server inertial frames. breaking implies that the standard-model extension is cova-
Although Lorentz symmetry is well established experi-riant under observer Lorentz transformations: rotations or
mentally, it lacks the essential status of stability and causalboosts of an observer’s inertial frame leave the physics un-
ity. It would be difficult to make meaningful experimental affected. The apparent Lorentz violations in the theory are
predictions in a theory without either stability or causality, associated with particle Lorentz transformations, which are
but a stable and causal theory without Lorentz symmetryotations or boosts of the localized fields in a fixed observer
could in principle still be acceptable. It is therefore worth- inertial frame.
while to consider the possibility that Lorentz symmetry Since the standard-model extension is formulated at the
might be violated and to examine the extent to which thislevel of the known elementary patrticles, it provides a quan-
violation conflicts with other fundamental properties of field titative basis on which to analyze a wide variety of Lorentz
theory. In particular, it would be of interest to establish theand CPT tests. In the QED context, investigations to date
existence of a class of theories that incorporate Lorentz vioinclude tests in Penning trap6—9], studies of photon bire-
lation but that nonetheless maintain both stability and caufringence and radiative effec{$,10,11, clock-comparison
sality. tests [12-16, experiments with spin-polarized matter
Lorentz symmetry is also one of the key ingredients in thg 17,18, hydrogen and antihydrogen spectroscdf,20,
CPT theorem[2]. This states under certain technical condi- and studies of muong1,22. In the broader context of the
tions thatCPT is an exact symmetry of local relativistic standard-model extension, studies of neutral-meson systems
guantum field theories. It is therefore to be expected thaf23—25, baryogenesif26], cosmic ray§27,28, and neutri-
investigations of theories with Lorentz violation include anos [5,27,29 have been performed. Present experimental
subset of cases in whidBPT is also broken. sensitivities are sufficient to detect Planck-suppressed ef-
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fects. Moreover, the next generation of tests is expected ttension. These include the development of the observed hi-
improve these results, in some cases by one or more ordeesarchy of scales in nature, the role of fluctuations about the
of magnitude. tensor expectation values generating the extra terms in the

Given the substantial progress on the experimental frongtandard-model extension, the explicit incorporation of grav-
it is of interest to study the regime of validity within which ity, and implications of nonminimality in the usual standard
the standard-model extension can be applied directly and tBl0odel such as supersymmetry and gauge-group unification.
develop a methodology for handling the corrections that aré\though important in the development of a complete under-
expected at high energies. Initiating this program is one oftanding, these issues lie beyond the present scope.
the goals of the present work. The point is that the standard- The results developed in this work provide both a guide to
model extension contains the low-energy limit of any realis-the regime of validity of theories with explicit Lorentz vio-
tic fundamental theory incorporating spontaneous Lorentzation and insight into the nature of the expected nonrenor-
and CPT violation, and on general grounds it is expected tomallza_ble corrections to the_ standard-model extension
have a range of validity comparable to that of the standar§Merging as the Planck scale is approached. The twin de-
model at sub-Planck energies. However, as Planck energié%a”ds of stability and causality Igad from a renormalizable
are approached, nonrenormalizable operators negligible &€!d theory to a nonlocal theory incorporating spontaneous
low energies should acquire importance. Since stability andorentz breaking. This supports the idea that the experimen-
causality are deeply related to Lorentz symmetry at the leveigl observation of Lorentz violation would provide unique
of renormalizable quantum field theory, imposing them avidence fo_r the no_nlocahty Qf nature at the Planck s_cale.
requirements at high scales in the context of the standard- The outline of this paper is as follows. Some basics are
model extension might be expected to yield interesting inprowdeq |n.Sec. [I. Section Il s.tudle_s re]at|V|st|c quantum
sights into the structure of the nonrenormalizable terms. Mechanics in a class of convenient inertial frames. Section

The present work contains an investigation of the role ofl ¥ Performs the canonical quantization of the field theory
stability and causality in Lorentz- an@dP T-violating theo- and .|nvest|gates stability a_nd causality in arbitrary frames.
ries, with particular emphasis on notions relevant to the fer- he issue of how the associated problems are resolved in the
mion sector of the standard-model extension. We approackontext of spontaneous Lorentz a6dP T breaking in a fun-
the subject by studying the quadratic fermion part of a gendamfantalltheory is discussed in Sec. V. Finally, a summary is
eral renormalizable Lagrangian with explicit Lorentz- andProvided in Sec. VI. Throughout, we adopt the notations and
CPT-breaking terms. It is the single-fermion limit of the conventions of Ref|5].
free-matter sector in the general standard-model extension.

As a necessary part of the analysis, we develop further the Il. SOME BASICS

results of Ref[5] on the relativistic quantum mechanics of . . . . .
this theory and perform the corresponding free-field quanti- In this section, we provuje backgrqund matena] and Intro-
zation. These results provide a complete quantization of thguce some ba3|c'|nf0rmafuon_ usgd In Iater sections Of.th's
free-fermion sector of the Lorentz- a@P T-violating QED work. Some of this material is discussed in more detail in
extension, including details such as the explicit general fornBef' (51 . .

of the one-particle dispersion relation. Interactions can be A general form for th‘? qugdraﬂc secto_r of a reryormahz—
handled in the usual perturbative manfi; a_ble Lorent;- ano_C PT-V|oIat|ng La_granglan describing a

One of our goals is to establish the nature of the difficul-SINgle massive spig-Dirac fermion is[5]
ties facing theories with explicit Lorentz violation, however 1
small. We find violations of stability or causality occur for L==iyl"d,p— yMy, (1)
momenta outside a scale determined by the size of the ex- 2
plicit breaking terms. Although the scale in question may be
large, consistency problems are typically present for anyvhere
conventional quantum field theory of fermions with explicit
Lorentz violation[30].

Another goal is to understand the mechanism by which
spontaneous Lorentz breaking in string theory could over- 2
come these difficulties. By itself, spontaneous Lorentz viola-
tion is an important ingredient. However, avoiding the prob-and
lems with stability and causality seems to require in addition
its transcendental suppression at high energies in the one-
particle dispersion relations, through the appearance of non-
renormalizable terms that are unimportant at low energies.
Interestingly, this requirement naturally leads to field inter-In  the above equations, the gamma matrices
actions of a type related to those found in string field theoryl, ys, v*, ysy*, o*” have conventional properties. In the

The analysis in this work leaves unaddressed several ircontext of the standard-model and QED extensions, the pa-
teresting theoretical issues associated with the transitiorametersa,,b,,c,,, ... ,H,, are determined by expecta-
from a fundamental theory with spontaneous Lorentz andion values of Lorentz tensors arising from spontaneous Lor-
CPT violation at the Planck scale to the standard-model exentz breaking in a more fundamental theory.

1
[y ety +d" sy, +e+if 'yt 5™ oy,

1
M:=m+a,y*+b,ysy"+ EH“VO'M,,. 3
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For definiteness, it is assumed throughout this work thavacuum. The Lagrangiafil) therefore serves as a single-
the masam of the fermion is nonzero. Our methods can in fermion model for the potentially realistic situation in which
many cases be directly extended to the massless situatiothe standard-model extension emerges as the low-energy
although the distinctions between finite- and zero-mass regdimit of spontaneous Lorentz violation in a fundamental
resentations of the Lorentz group introduce some additionaheory at the Planck scale.
complications that lie beyond our present scope. In any case, The distinction between observer and particle Lorentz
for most applications in the context of the fermionic sector oftransformations implies a dual role for Lorentz symmetry in
the standard-model extension, a nonzero mass is appropriatgudying stability and causality of E€L). Thus, if a theory is
One possible exception is the study of neutrinos, includingo be stable and causal, then in a specified observer frame the
neutrino oscillations. If neutrinos have mass then the resultnplications of energy positivity and microcausality should
below can be applied, with minor modifications for Majorananold for fields of different momenta related through particle
fermions as necessary. If one or more neutrinos are masslesyrentz transformations, while energy positivity and micro-
then more care may be required. _causality should hold in arbitrary inertial frames related by

_ Hermiticity of the Lagrangiaril) implies that the coeffi-  ,pserver Lorentz transformations. In later sections, it
cients for Lorentz violation are all re_al. More_ovgrﬂ_y a’?d emerges that these two roles can be distinct. For example, a
Ay can be taken as tra.celegs\w,,'antlsymmetrlc In its ﬂr;t theory with spacelike 4-momentum for some one-particle
lt:g I;;]:rlgc?lz fgrd;nf{; %r:,t;?/;]?eet\:\l,%igl tge p:rarpet(;rs VI0” states may maintain energy positivity under particle Lorentz

’ P R A R transformations in a fixed frame, but it will violate this re-

?elzg t\’,;f]ﬁléctigég?f ég(%f;lﬂg\r/‘;sc;?miﬂ(;)og;eocfjlngzlo%e quirement in certain other frames obtained by suitable ob-
X ) ) server Lorentz transformations.

reader is warned that field redefinitions may eliminate som . . - T
Since the various coefficients for Lorentz violation in Eq.

of these coefficients without altering the physids. For ) Do .
example, introducing a nonzero coefficieaj in a single- (1) carry Minkowski indices, they vary with the observer as

fermion theory such as Eql) has no observable conse- appropriate repr_eser]tations of the noncompact Lorentz group
quences. Howeves,,-type coefficients can lead to physical SQ(3,1) and are in this sense unbounded. For some purposes,
effects in more general multifermion theories, including theit iS useful to introduce a special class of inertial frames in

standard-model extension. For completeness, we explicitiyhich the coefficients for Lorentz ardPT violation repre-
keep all terms in Eq(1) in the present work. sent only a small perturbation relative to the ordinary Dirac

The Lagrangiar(l) is independent of the coordinate sys- case. We call a member of this class of frameoacordant
tem. Observations made by any two inertial observers can bigame If Lorentz andCPT violation does indeed occur in
related by coordinate transformations, called observer Lorhature, then on experimental grounds it must be true that any
entz transformations. Since E(}l) is a scalar under these inertial frame in which the Earth moves nonrelativistically
transformations, the theory exhibits observer Lorentz symcan serve as a concordant frame. The point is that no depar-
metry. However, in Eq(1) observer coordinate transforma- tures from Lorentz an€ PT symmetry have been observed
tions differ profoundly from boosts and rotations of particlesto date, so any Lorentz ar@P T violation in an Earth-based
or localized fields within a fixed inertial frame. The latter laboratory must be minuscule, with the coefficients appear-
transformations, called particle Lorentz transformationsjng in Eq.(2) much smaller than 1 and those in E8) much

leave invariant the coefficients, , b, , ... ,H,, and so can smaller tharm.
modify the physicd31]. The particle Lorentz symmetry is In the present scenario, the Lorentz- ané T-violating
therefore broken. effects are regarded as originating in a more fundamental

At the level of the present discussion, the observer Lortheory at some large scalp . It is plausible thaMp is the
entz symmetry of the theor§l) is a consequence of choos- Planck scale, since this is the natural scale for an underlying
ing a Lagrangian invariant under Lorentz coordinate transtheory including gravity, and in what follows we refer to it as
formations. More general classes of theories with explicitsuch. In any case, it is expected that observable effects in a
Lorentz violation could in principle be considered. For ex-low-energy theory with scale that arise from a fundamen-
ample, the Lagrangian might be taken to transform nontrivital theory with scaleMp would be suppressed by some
ally under the observer Lorentz group, or perhaps as a scalgower of the ratian/Mp . It is therefore likely that the order
under some non-Lorentz coordinate transformation. Howof magnitude of the coefficients appearing in E2). is no
ever, these possibilities represent radical departures frogreater thairm/Mp, while that of the coefficients in E@3)
conventional physics and lack motivation. In contrast, theis no greater tham?/Mp.
explicit Lorentz-violating terms in the Lagrangidh) could In conventional special relativity, all inertial frames are
arise from a more fundamental theory with a Lagrangiarequivalent in the sense that high-energy physics in one frame
invariant under both observer and particle Lorentz symmeis in one-to-one correspondence with high-energy physics in
try, provided the interactions in the theory are such as tany other frame. However, this equivalence fails in the
cause spontaneous Lorentz breaking. If so, then the coeffpresent context. The coefficients for Lorentz &DB T vio-
cientsa,,b,, ... H,, for Lorentz andCPT violation are  lation experienced by a high-energy particle in one frame can
related to vacuum expectation values of Lorentz tensor fielddiffer substantially from those experienced by a high-energy
in the underlying theory, and E@l) becomes a low-energy particle in a second frame because the particle Lorentz sym-
approximation to this theory in the Lorentz-breaking metry is broken. In particular, this means that statements
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restricting attention to Lorentz- ar@P T-violating effects at  defined as the largest absolute value of certain coefficients

high energies may be observer dependent. for Lorentz andCPT violation:
Given this ambiguity in the conventional notion of high
energy, it is useful to introduce a more precise definition. For 0= max{|c ,ol.|d ol |€0l | Tol:|9,.0l}- ©)
y7a%

purposes of the present work, the terminology of high and

low energies relative to the scale of the underlying theory i%Ne prove thats°<1/480 suffices for the spinor redefinition
always taken to refer to a concordant frame as defined abov% exist. The numerical value of this bound is far larger than

From an experimental point of view, this terminology is S€M"the maximum size 08° likely to be allowed on experimental

sible because by observation a laboratory frame moves non- , ; Co .
relativistically with respect to a concordant frame. The phys_grounds, showing that the spinor redefinition indeed exists

ics of hiah eneraies is therefore similar in both frames for the realistic situation. Although it is sufficient for our
9 9 ' purposes, this bound is not sharp. A determination of the

sharp bound would be of interest. We conjecture it is of
I1l. RELATIVISTIC QUANTUM MECHANICS order 1.
Once the spinor redefinition has been performed, the

In this section, we study the Lagrangiél) in the context — Euler-Lagrange equations generate a modified Dirac equa-
of relativistic quantum mechanics. The corresponding Hertion in terms of the new spinoy. It can be written as
mitian Hamiltonian is derived, and the associated dispersion
relation is obtained. We discuss properties of the eigen- (ido—H)x=0, (6)
spinors and determine the general solution of the equations
of motion. Throughout this section, we work exclusively in a

concordant frame as defined in Sec. Il. where the Hamiltonian

H=—-A"%IiT1s,— M)A 7
A. Hamiltonian 7 ( j ) (7)

The construction of the relativistic quantum Hamiltonianis Hermitian, as desired. Explicit forms for this Hamiltonian
H from the LagrangiarC of Eq. (1) requires care becauge  can be found in Refl12].
contains time-derivative terms in addition to the usual one.
In the concordant frame and a large class of associated ob-
server frames, this difficulty can be resolved by a spinor
redefinition chosen to eliminate the time-derivative cou- As usual, a solution to Ed6) is a superposition of plane
plings[6]. Writing »=Ay, we require the non-singular ma- waves of the form
trix A to be spacetime independent and to satisfy

B. Dispersion relation

x() =" w(X). ®)
ATTOA=1, (4)
where | is the 4x4 unit matrix. With this choice [ x] Here, the 4-spinow(\) must obey
contains no time derivatives outside the usual term .
Lixy°dox. This spinor redefinition amounts to a change of (Ao—H)w(N)=0, ©)
basis in spinor space, and as such it leaves unchanged the
physics. Note that its explicit form depends on the choice ofwvhereH is now understood to be i-momentum space, and

inertial frame. N, must satisfy the dispersion relation
It can be shown thah exists if and only if all the eigen-
values ofy°T"? are positive. First, recall that an equivalence de(hy—H)=0. (10)

relation of the formAT™XA=Y between Hermitian matrices
X,Y is called a congruences2]. In the present case, since ap alternative equivalent form for the dispersion relation is
both | andy°I"° are HermitianA exists if and only ify°I"°
is congruent tol. Next, recall Sylvester's law of inertia,
which implies that under a congruence the number of posi-
tive eigenvalues of a Hermitian matrix is invariant. Sirice ) ) . )
has all positive eigenvalues, the claimed result holds. since the non-singular matncqé’, A, andA' relating the

It follows that A always exists in the concordant frame. tWo forms of the Dirac equations contribute only overall
Define a matrixe® such that the zero component of gg) ~ Multiplicative factors to the determinant. . _
can be written in the fornir®= (1 + €°). Since the compo- To obtain an explicit expression for the dispersion rela-

nents ofe® are small compared to 1 in the concordant frametion, we write the matrid’“x ,—M as

de(T*\,—M)=0, (11)

by definition, the eigenvalues of°T'°=1+¢° are indeed
positive andA therefore exists. “\,—M=S+iPys+V*y, +A¥ysy,+ T a,,,
In Appendix A, we obtain an upper bound on the size of (12

the coefficients for Lorentz an@ P T breaking such tha#
can exist. The bound is expressed in terms of a quadfity where we have introduced

065008-4



STABILITY, CAUSALITY, AND LORENTZ AND CPT... PHYSICAL REVIEW D 63 065008

S=e“\,~—m, P=fr\,, our purposes, this bound is not sharp, and it would be of
interest to determine the sharp bound. We anticipate it is of
VA= \FE+CHN,—ak,  A*=d*'\,—DbH, order 1.
Another important feature of the dispersion relation is the
1 1 correspondence
T“”=§g“”f’)\p—§H“”. (13

0 -
AN 1oMay,dy, et Hyy)

Expansion of the determinant of this matrix yields 0 -
= _)\+(2’1)(_)\,_aﬂ,_dﬂv,_eﬂ ’_f/""_H/"V)

0=4(V,A,—A,V,~V,V,+A,A,+PT,,—ST,, (16)
+TWT“V+'~|'W?QV)2+(VZ—AZ—SZ— P?)? between the positive and negative solutions. In this equation,
—4(V2—A2)2+6(ewaBA“vﬁ)2, (14) we have displayed only the dependence on the coefficients

for Lorentz andCPT violation that change sign, and it is
Spv_ 1 _uvap understood that the other coefficients are held constant. The
whereT#"=3e*"*"T,; denotes the dual tensor. _ numbering of the roots is chosen to agree with the results in
The dispersion relatioitl4) can be viewed as a quartic pe [5] Equation(16) can be regarded as a consequence of
equation fon°(\). In principle, it permits the explicit deter- the identity det{#A ,— M) =def C(T"*\ ,— M)C~1], where
mination of the exact eigenenergies of a particle with givenc is the usual charge-conjugation matrix. This implies the
3-momentum in the presence of Lorentz anB T violation.  jnvariance of def(#\ ,—M) under the transformation
Various approximate solutions can also be obtained. For ex-

ample, in certain applications only the leading-order correc- {X,aﬂ e, 0, H,)
tions to the conventional eigenenergies are of interest. How- R
ever, we caution the reader that these cannot necessarily be H{—)\,—aM,—dW,—eM,—fﬂ,— HM,,} (17)

obtained by keeping only leading contributions to the coef-
ficients of the momentum in the dispersion relation and solvand leads to the corresponder(¢é).
ing for the energies, as is argued in some of the published
literature[33]. C. Eigenspinors

Many of the relevant properties of the dispersion relation The eigenfunctions corresponding to the two negative
can be established without an explicit algebraic solution. For 0 . »
example, sincéd is Hermitian all four roots of the dispersion fOOtSA~ ) can be reinterpreted as positive-energy reversed-
relation must be real. It follows from Eq11) that the roots momentum wave functions in the usual way. We define
are independent of the spinor redefinitigh), as expected.
This equation also implies that the dispersion relation is ob-
server Lorentz invariant and hence thgf must be an ob- (@)_ (@) (@) 2
server Lorentz 4-vector. X =exp(+ip,” - x)vt(p), (18)

In general, the fourfold degeneracy of the magnitudes of R - )
the roots of Eq.(11) is lifted, a feature different from the whereu(“(p) andv(“)_(p) are momentum-space spinors and
conventional Dirac case. Since the Lorentz &T viola-  the 4-momenta are given by
tion is small in the concordant frame, one still anticipates - - -

" 0 vy : =E".p, EP(P) =2 (),

two positive roots\ % ,)(A), @=1,2, and two negative roots u u u +(e)
)\ci(a)():). In Appendix B, we obtain a bound on the size of (@_(E@ 5 E@H) ==\, (=p)
the coefficients for Lorentz andP T violation such that this v v P v (P ~(@\ " P)- (19
anticipation is correct. The bound is in terms of a quandity

defined as The symmetry(16) of the dispersion relation determines a
relationship between the two sets of energies. We find

X =exp(—ip{?-x)ut(p),

5:mlz}a’lx{|aﬂ|,|b#|,m|CMj|,m|dm|,

EM(p.a,,d,, e, H,,)

m|ej|'mlfj|1m|gﬂvj|’|H,uV|}v (15 re

_EIE . e s
where the Greek indices range from 0 to 3 and the Latin T P I e T
index ranges from 1 to 3, as usual. We find that fr (20
<m/124 the dispersion relation has two positive and two_ . )

negative solutions, as usual. This bound is independent of tneimilarly, the spinors are related by

spinor redefinition. Its numerical value is much larger than (12) =

experimental observations are likely to allow, showing that v APy Ay 8 fu H o)

the presence of Lorentz ar@PT violation in nature would —u@5 —a —d  —e —f —H
indeed leave unaffected the counting of positive- and u (P8, =y, =€, =T, = Hy),

negative-energy solutions. Although more than adequate for (21
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where the superscript denotes a charge-conjugate spinormore formally, by extending the Dirac-bracket procedure to
defined byw®=Cw', as usual. anticommuting field434]. We adopt the former procedure
The spinorai andv are the eigenvectors of the Hermitian here. _ .
matrix H and they therefore span the spinor space. Orthogo- We promote the complex weights in the expangia4) to
nality of the eigenspinors is automatic for nondegenerat@perators on a Fock space. The spiyathereby becomes a
eigenenergies and in any case can be imposed by choice. THgantum field, as does the spingr The two fields are re-
normalization ofu andv is constrained by the requirement lated through the redefinitiogg=Ay, whereA is the same
(x%)°=x but is otherwise arbitrary. For definiteness, weMmatrix discussed in the previous subsection.

choose the conditions We impose the following nonvanishing anticommutation
relations:
(@)
u(Dt)T -> u(a/) - :50“1/ u ' R -, E(a) N -,
(P)u™(p) m {ba)(P),blory (PN} = (27)° = 8,0 8P~ D),
E(@ ()
@15y @) (p)= sva’ — 3 5 & p—p’
TPV ()= {d(0)(P).diory(P')} = (27)° = B0 S(P— D).
- ’ - (25)
u(a)T(p)v(a )(—p):O (22

These can be used to reconstruct the equal-time anticommu-

Note, however, that the conventional generalization of thé&tors for the fieldsy:
orthogonality relation involving the Dirac-conjugate spinors

_ ) ) vt v \~01— s oo
u andv fails in the present case. Equatié2®) implies the D)0 (6X) yid = 8 (x=x"),

completeness relation . = =0 = 20
DX x6 XD =10 (%) ¥ XX i
m

2
() (p ()T =0, 26
2 g L Peu) (26
where the spinor indicegk,l,m are displayed for clarity.
4 (@)= 5)®U(a)1'(_ 5) =1. (23 The above expressions permit the derivation of the equal-
E(—p) time anticommutators for the original fields as

With the above definitions, the general solution to the {0;(63), e (1,X )T} = 8 8% (x—x),
modified Dirac equatiolié) can be written as

{6, (6 X )} ={ (LT (£, X )T

2
x<x>=fd—3pg T b(Prexp—ip@-x)u@(p) _
2mi& | EPPw ’ —o0. 27

m - . - Note thatm :ﬁ“o is the canonical conjugate gf, parallel-
* (@ y)p (@) : b
* E@ di)(P)eXp+ip,™ - X) v (p) |, (24 ing the usual Dirac case.
The vacuum statg)) of the Hilbert space in the concor-

whereby,(p) andd},(p) are Fourier coefficients, as usual. dant frame is defined by

For simplicity, the dependence of the eigenenergies and
eigenspinors on the coefficients for Lorentz abB T viola-
tion is suppressed in this equation.

b(sy(P)[0)=0, d(a(p)|0)=0. (28)

The action of the creation operatd]iéa)(ﬁ) and dzra)(ﬁ) on
|0) produces states describing particles and antiparticles with
4-momentap{® andp{*®), respectively. This can be verified

In this section, we perform canonical quantization in ausing the normal-ordered conserved momentum
concordant frame by demanding energy positivity, as usual.
We then study the issues of stability and causality in arbi- Pu:f d3x:®#o:, (29)
trary frames.

IV. QUANTUM FIELD THEORY

_ o " where
A. Canonical quantization and energy positivity
In the usual case, straightforward canonical quantization 0 - 1 Ty (30
of a Dirac fermion is inadequate because the theory is sin- ) uv

gular. Appropriate quantization conditions can be found ei-
ther by requiring the positivity of the conserved energy or,is the conserved canonical energy-momentum tensor.
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In the present context, the one-particle states carry the A A
4-momentap® andp!® introduced in the previous section.

It follows from Eq. (19) that the zero components of these
4-vectors are positive definite. This validates the quantiza-
tion ansatz25) in the concordant frame.

The Lagrangiar(1) is observer Lorentz invariant by con-
struction. The observables resulting from quantization should
therefore be invariant or depend covariantly on the observer.
In the usual case, Lorentz transformations are unitarily -
implemented on the Hilbert space of states, and so covari- M |X|
ance follows directly. In contrast, in the present case the
coefficients for Lorentz an€ P T violation carry spacetime FIG. 1. Dispersion relation for a model with only a large non-
indices, and their values therefore depend on the observerero b, in a concordant frame. One of the two positive roots is
This implies that the Fock spaces constructed by differendisplayed. It intersects the light cone at a 3-momentum of magni-
observers are inequivalent. Nonetheless, the invariance adideM . The dotted line is the conventional dispersion relation for a
observables may be implemented by suitable mappings benassive particle.
tween the Fock spaces for any two observers. These map-

pings then form a representation of the Lorentz group withof the usual assumptions fails: some of the energy-
group multiplication being the mapping composition. Note momentum 4-vectors solving the dispersion relatidr)

that the existence of this group structure is assured if thenay under certain circumstances be spacelike in all observer
Lorentz violation is spontaneous. In this case, although thgames.
observer Lorentz symmetry cannot be unitarily implemented As an example, consider the dispersion relation
on the Fock space, the freedom to select the physical vacuum
among all Lorentz-equivalent choices means that all observ- (N2=Db%—m?)2+4b°\?—4(b-\)?=0 (31)
ers have Fock spaces in one-to-one correspondence.
The field quantization presented above can be performe

provided the bounds o&° and & in Sec. Il are satisfied, so %r a model with &), coefficient only. One can show that for

that the Lorentz-violating time-derivative terms can be re-2ny honzerd,,, no matter hOW. sma!l, itis always possible
moved and the usual eigenenergy-sign structure holds. The%% chozose an observer frame in whibh=(bo,0,0b3) and
conditions involve the size of individual components of ob-°3~M +[b*b,|. Defining the real quantities.. by
server Lorentz tensors and are thus inherently noninvariant
under observer Lorentz transformations. There is therefore a p§=(2b§+b2— m2) + \/(2b§+b2—m2)2—(m2+ 0?2,
class of observers, strongly boosted relative to a concordant ™~ (32)
frame, for whom these bounds are violated and the present
technique of field quantization fails. However, as discussed
above, the observer Lorentz invariance guarantees a one-ttiie spacelike 4-vectors*.=(0,0,0p.) can be shown to
one correspondence of the Fock spaces among all observessitisfy the dispersion relatidi31), as the reader is invited to
so some difficulties must also exist even for the quantizatiorverify. Moreover, the existence of such spacelike solutions to
scheme in a concordant frame. It turns out these are assodhe dispersion relation is unaffected by the inclusion of a
ated with the stability and causality of the theory. The nextonzeroa,, , for example.
two subsections discuss these issues in detalil. Although the instabilities introduced by the existence of
spacelike solutions exist in any frame, including a concor-
dant frame as discussed below, they are most transparent by
B. Stability considering observer Lorentz boosts. An appropriate ob-
In usual Lorentz-covariant free-field theories, energyServer boost involving a velocity less than 1 can always con-
positivity in a particular frame translates under certain asvert a spacelike vector with a positive Oth component to one
sumptions to the statement that the vacuum is stable in ariyith a negative Oth component. In the present instance, this
frame. One assumption is that the 4-momenta of all onemeans that there exist otherwise acceptable observer frames
particle states in the particular frame are timelike or lightlikein Which a single root of the dispersion relation involves both
with nonnegative Oth components. This is satisfied in thePositive and negative energies. In such frames, the canonical
usual Dirac theory. Since an observer Lorentz transformatiofuantization procedure fails.
cannot change the sign of these Oth components, energy In Figs. 1 and 2, the appearance of negative energies in a

positivity is in this case a Lorentz-invariant notion even strongly boosted frame is illustrated for a model with only a
though it is a statement about a 4-vector component. nonzerob, in a concordant frame. The dispersion relation as

In the present case with Lorentz a@P T violation, en- ~ Seen by an observer in a concordant frame is shown in Fig. 1.
ergy positivity in a concordant frame is assured if the boundone of the two positive roots is displayed. The energy is
on & discussed in Sec. Il B is satisfied. However, stability of manifestly positive for all 3-momenta. However, the disper-
the quantized theory in all observer frames requires morsion relation crosses the light cof&6] at a finite valuevl of
than just energy positivity in a concordant frame. In fact, onehe 3-momentum. Beyond this value, points lying on the
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A A . usual light cone. In terms of the group velocity of a wave
packet in the theory, given as usual by

- JE

vg:?n (34)
p

this requirement on the asymptotes implies the following
/> necessary condition for energy positivity:

IS

ry G=1, [pl—o. @35

FIG. 2. Dispersion relation for the model of Fig. 1 as seen by al h der i inded that th lation bet t
observer strongly boosted relative to the concordant frame. Th € reader Is reminde at the relation between momentum

occurrence of negative energies is apparent in the shaded regioAnd group velocity is unconventiond]. In particular,p and

The dotted line is the conventional dispersion relation for a massiv:z;g need not be parallel.

particle. Since the physics is invariant under observer boosts, the

appearance of negative energies in a strongly boosted frame

curve can be regarded as represented by spacelike vectarslicates that spacelike 4-momenta lead to a stability prob-

relative to the origin. All these spacelike vectors have posidem also in a concordant frame, albeit only for particles with

tive Oth components. energies exceeding the Planck scale. As an illustration, con-
For a suitable boost, some of the spacelike vectors arsider the following process in a concordant frame: a Planck-

converted to spacelike vectors with negative Oth compoenergy fermion emits a virtual photon, which then decays

nents. Figure 2 shows the result of a large boost. A portion ointo a fermion-antifermion pair. We can write this as

the dispersion relation has dipped below the energy zero. o

The corresponding negative-energy states represent a stabil- foa—f i +f_y, (36)

ity problem for the theory when interactions are introduced.

We remark in passing that under the same boost the othgjhere f and f denote fermions and antifermions, respec-

roots of the dispersion relation are positioned so as to prejyely, and the subscript labels the helicity state. In conven-

clude eliminating the negative energies by a simple shift otjonal QED, this decay is kinematically forbidden even

the energy Zero. though both the (1) charge and angular momentum are con-
The scale M of the 3-momentum at which the served. However, for Planck energies it can occur in the

4-momentum turns spacelike can be calculated explicitly ircontext of the Lorentz- an€ P T-violating QED extension

various models. For example, consider the case of a timelikaith a nonzerdy, coefficient. The dispersion relation for the

b,, as above. In an observer frame sz(bo,é), we  4-momentum E,p) of a fermion of helicity+1 or an anti-
find fermion of helicity —1 is given in Appendix B of the first
paper in Ref[5] as

5 m?+b3 5= 5
= 2o E=vm*+(|p|—bg)*. (37)
=0O(Mp). (33)  Taking for simplicity the 3-momenturfy| of the incoming
fermion as
The approximate equality in the last step is attained for the o2+ b2

case of 221 single suppression factor _from the Planck scale, lal= 0+bOZO(Mp), (39)
by~ O(m</Mp), following the discussion in Sec. Il. bo
This estimate reveals that the instabilities in the model
emerge only for Planck-scale 4-momenta in a concordarit/e find the proces36) is kinematically allowed with all
frame. The corresponding negative energies appear only fdinal 3-momenta equal tg/3. A single-particle state describ-
observers undergoing a Planck-scale boost relative to thisig a fermion of sufficiently large 3-momentu38) and
frame. It follows that the concordant-frame quantization wehelicity +1 is therefore unstable. The instability also occurs
have presented above maintains stability for all experimentor other high-energy single-particle states, although the final
tally attainable physical momenta and in all experimentally3-momenta are then unequal.
attainable observer frames. It can be shown that an initial spacelike 4-momentum is a
Inspection of the dispersion relation for thg model re-  necessary condition allowing the procé8§), as expected.
veals that in all observer frames the asymptotes of the disFhe decay proced86) could therefore occur repeatedly in a
persion relation are parallel to the usual light-cone asympeascade until the energy of the decay products reaches the
totes. The behavior can also be seen in the example in Figerder of the Planck scale in a concordant frame. Although
1 and 2. We see that, to avoid spacelike 4-momenta, thenusual, this behavior and related phenomena involving
asymptotes of the dispersion relation must remain inside thether decays might be phenomenologically admissible. How-
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ever, in what follows we focus on the possibility of main- contains all relevant renormalizable operators, the resolution
taining stability at the Planck scale despite the presence daif the stability issue must involve nonrenormalizable opera-
Lorentz violation. tors that are irrelevant at low energies. We return to this topic
The conclusion that instabilities enter@{Mp), as in Eq.  in Sec. V.
(33), may fail for models with a nonzero coefficient,, .
This coefficient is special because the associated quadratic C. Microcausality
field term has the same general spinorial and derivative
structure as the usual Dirac kinetic term, and so it acts as ab
first-order correction to an existing zeroth-order term. No®
other Lorentz-violating term has this feature.
As an explicit example, consider a model with only the
coefficientcy, nonzero in a concordant franid7]. The dis-
persion relation for this model in an arbitrary frame is

A quantum field theory is microcausal if any two local
servables with spacelike separation commute. In the
Lorentz- andC P T-violating Dirac theory(1), the local quan-
tum observables are fermion bilinears as usual, and micro-
causality holds if

iS(x—x")={(x),$(x")}=0, (x—x')?<0. (42
a a MV _ 2 —

(Dap™ Caw) (7, +C NN —m*=0. (39 We work directly with the original fieldy rather thany

because the observer Lorentz symmetry holds for the La-

grangian(1) written in terms ofis, whereas the conversion to
N2 N2—m2=0 40 X is frame dependent. Note that the anticommutator function

0 ’ S(x—x") depends only on coordinate differences, due to the
where we defing/=1+Coo. For the caseq,>0, we then ~translational invariance of the theory.

find that spacelike 4-momenta occur at a sddlaiven b To investigate the conditions under which E42) holds,
P ¢ y it is useful to obtain an integral representation 8x—x").

The latter can be found in terms of Green functions for the

In the concordant frame, this takes the form

M= m ~ ! m+ O(Cop) modified Dirac equation. In the conventional case, one usu-
=1 2cqy ally starts with the Fourier decomposition of the field opera-

tors and proceeds by identifying spinor projection operators.

=O(VmMp), (41)  The latter are then expressed in terms of gamma matrices,

) ) o ) the momentum, and the mass. However, in the present case a
where in the last step the approximate equality is attained fog;raightforward generalization of this last step is obstructed
a single suppression factor from the Planck scalgy py the complexity of the modified Dirac equation. Instead, a
~O(m/Mp). more general argument can be adopted.

well below the scalép of the underlying theory in thegy  tign

model withcy>0. We show in the next section thatdfy

<0 instead, then microcausality violations arise at the same iIGR(X,X")=O(t—t ) {h(x), h(x")}, (43)
scale. If these results continue to hold in the full underlying

theory, they could have observable physical implications. Asvhere® denotes the usual Heaviside step function. With the
one example, Coleman and Glashow have sugg¢g®dhe  help of the canonical anticommutatdi?), it can explicitly
interesting possibility that high-energy effects fragy-type  be checked thaBy satisfies

terms might be responsible for the apparent excess of cosmic

rays in the region of 1§ GeV. This scale is potentially com- (iT#9,—M)Gg(x,x") = 8™ (x—x"). (44)
parable toymMp. However, if stability and causality are ) . »
imposed on the theory, then tieg, dispersion relatiori40) It'follows ththR(x,x’) is a Grgen functlon'of the modified
must be modified. This in turn is likely to modify the physi- Dirac equation, and therefore it can be written as

cal implications at high energies. In Sec. V, we discuss some 4 e x)

possible high-energy corrections to Eg0) that would pre- Gr(x X,):j d*\ e 45
serve stability and causality. It would be of interest to revisit RV Cr (2m)* r“x,—M"

the cosmic-ray analysis in light of these requirements.

In any case, given the impracticality of achieving Planck-Inspection shows tha€Cg is the contour of the retarded
scale energies or boosts in the laboratory, the issues witGreen function passing above all poles in the compléx
spacelike 4-momenta are largely unimportant at the level oplane. Similarly, it can be shown that the function defined by
the standard-model extension. However, they do confirm the o
expectation that corrections to the theory at high energies are iIGA(X,X)=—=0O(t" —t){¢(x),¥(x")} (46)
needed for complete stability. Requiring stability therefore
has the potential to provide insight into the nature of theis the advanced Green function, with the same representation
corrections. This situation is qualitatively different from that as Eq.(45) except that the contouCry is replaced with a
occurring in conventional special relativity, where Planck-contourC, passing below all the poles.
scale boosts are admissible without generating instabilities The anticommutator functioB(x—x") can be written as
internal to the theory. Since the standard-model extensio®=Gr—G,. The integral represention f@ has the same
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form as Eq.(45) except thaiCy is replaced by a contou®
encircling all poles in the clockwise direction. If the matrix
in the integrand of Eq(45) is explicitly inverted, we can
replacex“—ig* in the matrix of cofactors cof(*“\ ,—M)

to obtain

- d47\ efix-z
S(z)=cof(1“"|aﬂ—l\/l)fC (2m)* de(T ¥\ ,— M)’
(47)

|21
The interchange of differentiation and integration is justified _ _ _ _
because the contour can be deformed so that the integrand is FIG. 3. Dispersion relation for a model with only a large nega-
analytic in the neighborhood & [35]. tive nonzerocy, in a concordant frame. The degenerate positive
Nex'[7 we take advantage Of Observer Lorentz |nvar|ancé00ts are dlsplayed The dashed lines show their asymptotes. The

and boost to a frame such thet= (O,Z). The evaluation of dotted line is the conventional dispersion for a massive particle.
S(z) outside the light cone is simplified when the spinor
redefinition discussed in Sec. Il A can be performedlh
observer frames. A sufficient condition for this is

cannot be made Hermitian and the roots of the dispersion
relation can therefore be complex.
As an explicit example, let us return to tbg, model with
Cu=d,,=€,=1,=0,,,=0, (48) dispersion relatiori40) discussed in the previous subsection,
but without imposingcg>0. For this model, the integration
so that the derivative couplings take the standard form within Eq. (47) can be performed analytically to yield
I'*=y*.In this case, a Hermitian Hamiltonian always exists,
and the four poles of the integrand in E¢7) remain on the o
real axis in the complex? plane. S(2)=(i £y’ —iy'ol+m)
Under the condition(48), we can directly perform the
contour integration in Eq(47). For simplicity, we assume
here that all four root& ;(p), j=1, . . . ,4, of thedispersion - - .
relation are nondegeng;ate. Cases with degenerate roots c‘ﬁnere r=|z|, w?=(2/¢)?>~2% and Jo(y) is the zeroth-

be treated similarly with slight algebraic changes. ExplicitOrder Be;sel function. Thus, the anucommytator funoctlon
calculation yields S(z) vanishes only in the region defined by

<(1+cgy)|z|. Outside this regionS(z) could be nonzero.
f d\® 1 Signal propagation therefore could occur with maximal
¢ 27 (\°—E(1))(N\’=E(2) (\°— E(3) (N~ E(4)) speed 1/(¥ cqo). Whency is negative, this exceeds 1 and
hence violates microcausality.
i To make further progress, it is useful to introduce a defi-
“(E.—E E. . —E E.—E nition of the velocity of a particle valid for an arbitrary
Ew~Ee)(Ew~Ee)(Ew~Ew 3-momentum. Even in the usual case without Lorentz and
N i CPT violation, the notion of a quantum velocity operator is
(E)—E@)(E@—E)(E2)— E) nontrivial. The presence of Lorentz a@PT violation fur-
_ ther complicates the issu&]. For definiteness, we consider
I here the group velocity defined for a monochromatic wave in
Es)—E@))(E3)—E2)(E@)—Eq) terms of the dispersion relation by E@®4). Thi_s choice is_
_ appropriate for several reasons. For one-particle states in the
I —0, (49 theory, the flow velocities of the conserved momentBin
Ewy~Ea)(Ewy—E@x)(Ewy—E@E) and the W1) charge can be calculated from the correspond-
ing conserved currents, and they agree with the group veloc-
where the dependence of tkgj) on p has been suppressed. ity (34). Also, we have checked explicitly thaﬁ;(/dt):z;g
This calculation shows thaB(z) vanishes outside the in the relativistic quantum mechanics of tlig, model.
light cone if Eq.(48) is satisfied. Thus, microscopic causality Moreover, for the explicit examples considered above, in-
is ensured for the Dirac quantum field theory in the presenceolving either no derivative couplings orcg, coupling only,
of Lorentz andCPT violation controlled by the coefficients the magnitude of the maximal attainable group velocity is

d
Gy ar O WAIo(miwA)],
(50)

B

T

a,,b,,andH,,. equal to the maximal speed of signal propagation determined
The above argument can fail when E48) is invalid. For  from the anticommutator function.
this more general case, the poles of the integrand in4A). Figures 3 and 4 illustrate the situation for tbg model.

may no longer lie on the real® axis in an arbitrary observer The dispersion relation in a concordant frame is displayed in
frame, and the contou® may therefore fail to encircle them Fig. 3. This figure shows that the maximal speed is attained
all. This corresponds to the case where the boundsdn asymptotically for large 3-momenta. Figure 4 shows the
discussed in Sec. Il A is violated, so that the Hamiltoniangroup velocity as determined from the dispersion relation in
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To see what happens for other Lorentz- and
CPT-violating terms with derivative couplings, consider a
model with only a nonzere,, term. Its dispersion relation is

A2—(m—\-e)?=0. (54)

For simplicity, we takee, to be timelike and choose the

concordant frame to have=0. The scaleM of microcau-
sality violation is then found to be

~ 1
FIG. 4. Group velocity for the dispersion relation of the model M= e_om
in Fig. 3 as a function of the 3-momentum in a fixed direction. The
asymptotic development of velocities exceeding 1 is apparent in the =0O(Mp), (55

shaded region, which lies above a momentum sbaléThe heavy ) ) o )
dashed lines correspond to the usual limiting velocities. The ~ Where in the last step the approximate equality is attained for
dotted line is the usual result for a massive particle. a single Planck-scale suppression factgyr;- O(m/Mp), as
before. This confirms that microcausality is violated in the

the same frame. Above a certain valid of the €. Model atthe scale of the underlying theory, as expected.
3-momentum magnitude, all the group-velocity magnitudes The €, model can also be used to illustrate the relation
exceed 1 between microcausality and Hermiticity of the Hamiltonian

It follows from the above considerations that a necessary?- In thee,, model, the matrixy"I'"" takes the explicit form
condition to avoid microcausality violations is that the

asymptotic behavior of the energy must have a slope less 1+e 0 0 0
than or equal to that of the usual light cone: 0 1+eg 0 0
yI0= (56)
5oL [5] 50 o0 e O
=1, —00,
Ys P 0 0 0 1-e

Combined with Eq(35), we see that a necessary condition,

for a positive root to avoid both negative energies in somd" the Pauli-Dirac representation. Provideg| <1, the spec-

oo - o
observer frame and microcausality violations is that theUm of y"I'"" containes positive numbers only, a matrix

asymptotic behavior of the dispersion relation must lie inside>isfying Eq(4) can be found, and a Hermitian Hamiltonian
the forward light cone and satisfy H exists. However, ifeg|>1, two eigenvalues become nega-

tive, y°I'? is no longer congruent to the identity, the spinor-
redefinition matrixA cannot exist, and a Hermitiga cannot
be found.

The same problem is reflected at the level of the disper-
ion relation(54). Its solutions

lvgl=1, |p|—c. (52)

Although this is only an asymptotic condition, it nonetheless
provides an interesting constraint on possible stable and
causal models for Lorentz ar@PT violation.

Insight about the scal® of microcausality breakdown Ao 5
can be obtained by determining the value of the - ep—1
3-momentum at which the group velocity reaches 1:

v4|(|p|=M)=1. For thec,, model, the dispersion relation
gllIP 00 p

eo(M+X-6) % V(Mm+X-6)2+ (1—e)N2

(57)

can become complex fdey|>1. Since it is always possible
to find an observer frame in which this condition is satisfied,

(40) gives the model is inconsistent with observer invariance of the
Hermiticity of H. This again indicates that the argument for
5 ¢ 1 . ’ . o > GTIVH
M = m~~ m+ O(Cgo) microcausality can fail when the conditiga8) is invalid.
V1-22 =2cq Figures 5 and 6 illustrate in the context of tag model
how eigenenergies can be real in one observer frame and
=0(VmMp). (53 complex in another, despite the observer invariance of the

dispersion relation. Figure 5 shows the dispersion relation for
In the last step, the approximate equality holds for a singlea model with a nonzere, only, in a concordant frame. One
suppression factacy~O(M/Mp). of the two positive roots and its negative partner are dis-
The result(53) is a special feature of models with a non- played. The eigenenergies are real for all 3-momenta. How-
zeroc,, parameter. It is the same as that for the case witlever, the slope of the dispersion relation exceeds 1 for a
Coo>0, given in Eq.(41). We see that group velocities ex- sufficiently large 3-momentum. The effect of this on a posi-
ceeding 1 occur in they, model at energies well below the tive root and its negative partner as seen by an observer in a
scaleMp of the underlying theory. This may have physical strongly boosted frame is displayed in Fig. 6. These two
implications, as mentioned in the previous subsection. roots admit no real value of the energy for 3-momenta in the
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rily for Planck-scale 4-momenta in a concordant frame or for
observers undergoing a Planck boost relative to this frame.
Nonetheless, it would be theoretically interesting to have a
framework for Lorentz andC P T violation in which micro-
causality is exactly preserved. Moreover, constraints from
the requirement of causality may offer insight into the nature
of an underlying theory with Lorentz an@PT violation.
This is the subject of the following section.

V. PLANCK-SCALE EFFECTS

The results of the previous section indicate that a quantum
field theory of massive fermions with terms containing ex-
plicit Lorentz andCPT violation generically develops diffi-
culties with stability or causality. However, if the coeffi-
cients controlling the violation are Planck-suppressed, as in

FIG. 5. Dispersion relation for a model with only a large non- the standard-model extension, the difficulties arise only at
zeroey in a concordant frame. One positive root and its negativehigh energies or high boosts determined by the Planck scale.
partner are displayed. The dashed lines show the asymptotes. Many possible sets of values of the coefficients

) . a,,b,,...H,, for Lorentz andCPT violation in Eq.(1)
shaded region. Moreover, there is a range of 3-momenta fqgjirmin

. . ) . ’ ate one of the two difficulties. However, we are un-
which the dispersion relation has multiple-valued roots. aware of any combination of the coefficients that simulta-

This feature can be expected in the general case, wheRoysly maintains both stability and causality. Although it is
ever the magnitudév 4| of the slope of the dispersion rela- conceivable that a satisfactory combination would be natu-
tion in a concordant frame exceeds 1. More generally, theally selected by a mechanism for Lorentz &B& T break-
individual branches of the dispersion relation should remainng in an underlying theory, we conjecture that no such com-
one-to-one mappings under observer Lorentz transformasination exists. A definitive argument to settle this issue
tions, so that each 3-momentum has exactly one image poinould be of interest but appears hampered by the complexity
The number of real solutions to the dispersion relation isof the dispersion relatiofil4).
then invariant under observer boosts. In terms of the we have previously advocated spontaneous Lorentz and
asymptotic behavior of the dispersion relation in the generab PT breaking in a Lorentz-covariant theory at the Planck
case, we see that the existence requirements for the spinggale as a possible mechanism that could generate the appar-
redefinition(4) and for a Hermitian Hamiltoniahl also lead  ent Lorentz andCPT violations at low energie$3,4]. In-
to the condition(51). deed, the standard-model extension includes by construction

The above analysis reveals that difficulties with causalityg]| possible renormalizable terms maintaining the usual
in the Lorentz- andC P T-violating Dirac theory arise prima- gauge structure while potentially originating in spontaneous

or Lorentz breaking. This reasoning is a top-down approach,
A with theoretical considerations at the Planck scale suggesting
that spontaneous Lorentz violation might emerge as the ap-
parent violation in the standard-model extension. However,
the requirements of stability and causality appear strong
enough to adopt the inverse line of reasoning. Thus, as the
Planck scale is approached, higher-order nonrenormalizable
operators coming from the fundamental theory should play
an increasing role. The structure of the standard-model ex-
tension as a conventional quantum field theory should there-
fore undergo a corresponding modification, which could pro-
vide insight into the nature of the fundamental theory at the
Planck scale. In the remainder of the present section, we fill
in some details for this set of ideas.

A. Spontaneous Lorentz andCPT breaking

FIG. 6. Dispersion relation for the model of Fig. 5 as seen by an  Since a theory with spontaneous Lorentz &#T viola-
observer strongly boosted relative to the concordant frame. ThiON starts from a Lorentz-invariant Lagrangian and hence
occurrence of multiple-valued energies for a given root is apparenflas Lorentz-covariant dynamics, it is unsurprising that it
The positive root and its negative partner have no real values of thavoids at least some of the difficulties plaguing more general
energy for 3-momenta in the shaded region. The dashed lines shomodels involving Lorentz an€ P T violation. For example,
the asymptotes. one consequence of spontaneous violation is the natural
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maintenance of observer Lorentz invariance, which the pre- 1 . 1

vious sections have shown to be an important advantage. L’:J[Eiv”%—m—f)’s)’“(ﬁﬁr B Y= 7 F¥F L
Thus, given a Lagrangian invariant under both observer and

particle Lorentz transformations, spontaneous symmetry 5

breaking violates only the latter. The point is that observer — 4 MB¥B,—2B-p)

Lorentz invariance is a statement about physical behavior

under certain coordinate changes made by an independent 1 o ,

external observer, and once this property is built into a =y 5'7’”‘9#_”"_7’57’%# p+ L, (59)

theory it cannot be removed by the behavior of fields internal
to the theory. In contrast, imposing observer Lorentz invariwhere in the last step we have identifi€@,, with b, and
ance in a theory with explicit Lorentz breaking requires anexplicitly displayed all the quadratic fermion termsgn The
additionalad hocchoice. remaining pieceC’ of the Lagrangian contains only bosonic
Spontaneous violation manifests itself physically becausguadratic terms and interactions. We see that the spontane-
the Fock-space states are constructed on a noninvariagtis Lorentz andCPT violation in the Lagrangiari58) has
vacuum. Any difficulties with spontaneous Lorentz &BT  generated thé,, model discussed in previous sections.
violation must therefore be a consequence of Lorentz- and The free-field Fock space of the quantum theory associ-
CPT-violating properties of the ground state. However, theated with £ contains one-fermion states determined by the
link between stability, causality, and Lorentz symmetry doesyuadratic terms in Eq59). These states have dispersion re-
indeed depend in part on the notion of an invariant vacuumiations given by Eq(31), as before. They therefore suffer
The difficulties uncovered in the previous section can b&rom the same problems of instability as the model dis-
regarded as a consequence of vacuum noninvariance. Fefissed in Sec. IV B. This leads to difficulties within the stan-
example, the vacuum state in one frame is not necessarily theard framework of perturbative quantum field theory, since
lowest-energy state in all frames. Despite its advantages, onfie interacting fields are normally constructed iteratively
therefore might expect that spontaneous Lorentz @RI from the free fields under the assumption that the effects of
violation alone may be insufficient to guarantee stability andnteractions are small. The toy model therefore still has in-
causality at all scales in a generic quantum field theory.  terpretational difficulties, despite the spontaneous nature of
To gain insight into this issue, it is useful to consider a toythe Lorentz andCP T violation.
quantum field theory describing a Dirac fermigninteract- A similar argument applies to more general models. Since
ing with a vector fieldB, , with a potential for the vector that the theory described by Eql) contains the most general
induces spontaneous Lorentz a@dPT violation [38]. The  terms quadratic in the fermion fields and arising in a renor-

Lagrangian is malizable theory, any conventional fermion field theory with
1 1 spontaneous Lorentz an@dPT violation analogous to Eg.
/;:J(Ei YAd,—m—EysyB, | — ZFMFW (58) must generate free-fermion Fock-space states with dis-
persion relations contained as a subset of(E4). If all such

1 dispersion relations indeed lead to either stability or causality
— \(B*B,— p?)?2. (5g)  Violations at some large scale, as expected from the discus-
4 . sion in Sec. 1V, then it follows that no conventional Lagrang-
ian of fermions with spontaneous Lorentz ZD& T violation
The fermiony has massn and is chirally coupled to the has a completely satisfactory perturbative quantum field
vectorB,, with dimensionless strength The field strength theory. Although it is conceivable that a nonperturbative
F,, for B, is defined as ,,=d,B,—4d,B,, as usual, while  analysis taking the full structure of the theory into account
the potential term foB,, is controlled by a dimensionless would reveal a consistent theory satisfying stability and cau-
constanth and by a constang with dimensions of mass sality, this appears unlikely. Even this possibility is excluded
satisfying 3°>0. if the quantum field theory iglefinedin terms of its pertur-
The Lagrangian58) is a scalar under both observer and bative expansion, as is sometimes done in the literature.
particle Lorentz transformations and contains no explicit The above discussion shows that spontaneous symmetry
Lorentz- andCP T-violating terms. However, the last term breaking in a conventional quantum field theory can natu-
triggers a Lorentz- an€ P T-violating vacuum expectation rally generate Lorentz- and P T-violating terms of the form
value(B,)=p,,, whereg,, is a constant 4-vector satisfying in Eq. (1) and ensures various desirable features such as
BM,B'“‘:,BZ. Note the close analogy to spontaneous symmetrypbserver Lorentz symmetry. Provided the coefficients for
breaking in the standard @) model withN=4. The Lor- Lorentz andCPT violation are small, as in the standard-
entz invariance of the Lagrangidb8) means that the con- model extension, difficulties arise only at large scales. How-
stant vectorg, can be arbitrarily chosen, but a definite ever, by itself spontaneous Lorentz violation is insufficient to
choice must be specified to establish the quantum physicensure stability and causality at energies determined by the
This choice forces the particle Lorentz symmetry to be sponPlanck scale. Maintaining stability and causality requires an
taneously broken on the Fock space. additional ingredient that goes beyond conventional quantum
The physics of interest is described by fluctuations aboutield theory. This is consistent with the idea that the obser-
the vacuum. Redefining,— B,+B,, in parallel with the vation of Lorentz ancC P T violation would provide a unique
usual case yields signal of Planck-scale physics.
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B. Nonlocality

If indeed the requirements of stability and causality are to
be satisfied by free-field terms, then it is of interest to iden-
tify a class of theories for which no difficulties arise in the
qguadratic Lagrangian. Such theories would need to include
terms beyond the ones in E¢L). The new terms must be
nonrenormalizable, and in a realistic scenario with spontane-
ous Lorentz violation they would correspond to higher-
dimensional nonrenormalizable operators correcting the
standard-model extension at energies determined by the
Planck scale.

The first step is to determine whether any type of disper-
sion relation can satisfy all the requirements for consistency.
In a concordant frame, a satisfactory dispersion relation de-
scribing Lorentz andCPT violation would reproduce the
physics of Eq.(14) for small 3-momenta but would avoid
spacelike 4-momenta and group velocities exceeding 1 for
large 3-momenta. Moreover, its gsymptotlc behavmr WOU|dzerob0 in a concordant frame and exponential suppression at large
need to obey Eq(52). These requirements could be imple- energy. All four roots are displayed. None cross the light cone. The

rr_lent_ed by _Combining the coefficients for I__orentz 4T dotted lines are the four roots for thy modelwithout the expo-
violation with a suitable factor suppressing them only atyentia suppression.

large 3-momenta. A factor of this type must be essentially
constant at small 3-momenta and must overwhelm polynoelispersion relation can be found that removes the difficulty
mial powers at large 3-momenta. Since the distinction bewith stability in arbitrary frames.

tween small and large 3-momenta is a frame-dependent con- Figure 7 shows the dispersion relation for the modifigd
cept, it is to be expected that a suitable factor would also benodel in the special case where orily is nonzero in a
frame-dependent and hence involve Lorentz- anctoncordant frame. At small energies, the exponential factors
CPT-violating coefficients. are negligible and the behavior is essentially like that of the

A complete treatment of the possibilities lies outside theoriginal by model. However, at large energy the exponential
scope of the present work. Instead, we prove by example thd&ctors dominate, causing the dispersion relation to remain
suitable dispersion relations can in principle exist by provid-within the light cone while asymptotically approaching it as
ing explicit situations with the desired features. We presentequired by conditior{52). The modifiedo,, dispersion rela-
here two cases that are closely related to bheandc,, tion (60) therefore has no difficulties with energy positivity
models discussed in Sec. IV. To simplify the discussion, wen any frame.
disregard here issues associated with the size of the coeffi- To establish that microcausality is also preserved, the
cients for Lorentz an@ P T violation and take all masses and group velocity of the modified dispersion relati60) can be
Lorentz- andC P T-breaking coefficients to be of order 1 in examined. Figure 8 shows that the group velocity can indeed
appropriate units. This permits a focus on resolving the problie between the usual limiting values1 for all values of the
lems of stability and causality at Planck-scale energies in 8-momentum despite the modification to the dispersion rela-
concordant frame without the complications introduced bytion. Note that the asymmetry of this plot reflects the asym-
the hierarchy of scales. metry of the corresponding curve in Fig. 7.

Consider first a dispersion relation obtained from &4) It is also possible to find examples where the difficulties
for theb,, model by combining all appearancespf with an  with causality are absent. For example, consider the disper-
appropriate exponential factor. For simplicity, we take a
model with only a nonzerb, in a concordant frame. Multi-
plication of each factor oby by exd—(bgho)?] suppresses
the effect ofb, at high energies with minimal effect at low
energies. In an arbitrary frame, observer Lorentz invariance
implies the resulting modified dispersion relation takes the
form

FIG. 7. Dispersion relation for a model with only a large non-

[N2—b2exd —2(b-N\)?2]—m?P+4b%\?exd —2(b-\)?]
—4(b-N)?exd —2(b-\)?]=0. (60) = T

FIG. 8. Group velocity for the dispersion relation of the model
For b, of appropriate size, the positive roots of this modifiedin Fig. 7 as a function of the 3-momentum in a fixed direction. The
dispersion relation remain positive in all frames. This pro-modified dispersion has no group velocity exceeding 1. The dashed
vides a proof by example that a suitable modification of theines correspond to the usual limiting velocitiel .
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A

FIG. 10. Group velocity for the dispersion relation of the model
in Fig. 9 as a function of the 3-momentum in a fixed direction. The
modified dispersion has no group velocity exceeding 1. The dashed
lines correspond to the usual limiting velocitiesl .

bility and causality, it would appear somewhat contrived to
FIG. 9. Dispersion relation for a model with only a large non- implement both the necessary observer Lorentz invariance
Zerocy in a concordant frame and exponential suppression at largand nonlocal couplings by hand. In contrast, we see that
energy. Only two curves appear because there is a two-fold degespontaneous Lorentz ai@P T violation in a nonlocal theory
eracy among the four roots. The dotted lines are the correspondingan naturally yield the desired ingredients for stability and
roots for thecyy modelwithoutthe exponential suppression. causality at all scales.

sion relation obtained from Ed40) for the coq model with
Coo<0 by multiplying each factor o€y, with an exponential

factor eXIOCoo?\S)- In an arbitrary frame, the result is a modi- Our field-theoretic considerations seeking the nature of
fication of Eq.(39) given by Planck-scale corrections to a low-energy quantum field

theory with Lorentz andCPT violation have thus led natu-
(Dot Cape exp(cﬁy)\ﬁx ") (n*,+c”, ex;icm)\ﬁ)\ 1)) rally to the case of a nonloca] theory with sponte}neous sym-
) metry breaking. String theories have nonlocal interactions,
—m*=0. (61)  anditis of interest to determine whether they could be of the

) ) .. . desired kind. Although a satisfactory realistic string theory
The exponential factors remove the microcausality violationg, o yet to be formulated, string fieid theories do exist for

that previously occurred at large, . Indeed, it can be shown g5 me simple string models and have already been used to

that the group velocity remains below 1 for all valueshof  investigate microcausality in the Lorentz-invariant cp@.

This proves by example that a suitable modification of theMoreover, studies of string field theory provided the original

dispersion relation can eliminate difficulties with microcau- motivation for identifying spontaneous Lorentz a@PT

sality [39]. violation as a serious candidate signal from the Planck scale
Figure 9 displays the dispersion relation for the specia[3] and for the construction of the standard-model extension

case of a modified model with only a nonzexg in a con-  as the appropriate low-energy limit.

cordant frame. At small energies, the exponential factors are |n the remainder of this section, we examine the structure

negligible and the behavior is essentially like that of theof the field theory for the open bosonic string to see whether

original coo model. However, at large energy the exponentialit is compatible with dispersion relations of the desired type.

factors dominate, so the group velocities never exceed 1 anglithough this theory is unrealistic in detail, the structural

causality is maintained. The asymptotes of the dispersiofeatures of interest are generic to string field theories and so

relation coincide with the light cone, as required by E¥2).  provide insight into the possibility of generating a consistent

The group velocity of the modified dispersion relati@i) is  theory with spontaneous Lorentz a@d T violation.

shown as a function of the 3-momentum in Fig. 10. It re-  The open bosonic string has no fermion modes, so instead

mains within the usual limiting velocities everywhere, as de-we focus on the dispersion relation for the scalar tachyon

sired. mode in the presence of Lorentz- a@dP T-violating expec-
The above demonstrations prove that dispersion relationgition values of tensor fields. In general, the analogue of Eq.

violating Lorentz andCP T while maintaining stability and (1) for a single real massive scalar fiefdlis [5]

causality can exist. It would be of interest to identify theories

from which these dispersion relations emerge naturally. The Y

appearance of transcendental functions of the momenta cor- ﬁziaﬂq’ww’_ §m2¢>2+ Ek#”aw"? ¢. (62)

responds to the occurrence of derivative couplings of arbi-

trary order in the Lagrangian. A satisfactory theory with Lor- Here,k ,, is a dimensionless coefficient for Lorentz violation

entz andC P T violation appears necessarily to be nonlocal inthat preserve€PT. It can be taken as real, symmetric, and

this sense. Although it is conceivable that a theory with ex4raceless. The dispersion relation for this theory is closely

plicit Lorentz breaking might satisfy the requirements of sta-related to that for the Lagrangidf) with a nonzero coeffi-

C. String theory
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cientc,, only. For the special case with onky, nonzero in N+ (a' ko)t -+ k(B )N+ - -
a concordant frame, the dispersion relation of the thé62y oo
is just that in Eq.(40) with the identification?=1+koq. +Ko(D ypor) NNNPNT+ -+ - =0. (66)

Studying the dispersion relation of the scalar tachyon mode
in the presence of Lorentz violation is therefore more approwe see that the structure of this equation does indeed contain

priate than might perhaps be expectegriori. features similar to those needed for a dispersion relation sat-
The action for the Witten string field theof#l] can be isfying criteria for stability and causality. Thus, for example,
written in the Chern-Simons form the type of term in the toy dispersion relati(#t) is a subset

of the terms displayed in Eq66), when only Oth compo-
I(\If)=i,f VX QW + QJ Ny (63) nents _of the 2 tensors are nonzero and thetl2-tensor ex-
2 3 pectation value is proportional tddg)’.

We emphasize that the purpose of the above discussion is
wherea’ is the Regge slope arglis the on-shell 3-tachyon only to provide an outline indicating how an acceptable dis-
coupling at zero momentum. The opera@racts as a qua- persion relation for Lorentz violation might emerge in the
dratic kinetic operator. The interactions are controlled by thQ:ontext of String theory_ In particu|ar7 we make no claim that
star operatow, which joins the left half of one string to the the tachyon itself mustecessarilyobey such a relation, al-
right half of another. The integral joins the left half of a though it is conceivable that it doé8]. Here, the tachyon
string onto its own right half. dispersion relation is used merely as an example to display

The vibrational modes of the string are the particle Sta’[e%xpncmy the appearance of nonlocal Coup“ngs in String
The field¥ can be decomposed as a linear combination otheory that could be appropriate for a stable and causal
ordinary particle fields with coefficients that are solutions Oftheory with spontaneous Lorentz violation. Such Coup"ngs
the first-quantized theory, expressed as creation operatogge generic both for other fields in the open bosonic string

a_y, ... acting on a vacuun). Following the notation of  and for fields in other string theories, including ones with
Ref.[42], the fields in¥ are found to include among others fermions.

a scalar ¢ (the tachyoh and a series of j2tensors It would be of interest to find an explicit analytical con-
B Dyvpos -+ -t struction for a Lorentz-violating solution in some string field

theory and demonstrate its stability and causality. The most

T P +iB ot o accessiblle case is Iikgly to.be the open bosonic string, but
\/5 pr= =171 other string field theories with fermions could be amenable

to investigation. If such a solution exists, it may be possible

1 V . to find it using the methods of Ref43]. These interesting
+ mepaa’fla—la’i 1@74+---1|0).  (64)  issues lie beyond the scope of the present work.
The explicit Lagrangian for the theory in terms of particle VI. SUMMARY

fields to low orders has been obtained in Hé&]. Our in-

terest here lies merely in determining whether the theory can !N this paper, we have investigated the issues of stability
in principle contain the types of term necessary for a stapl@nd causality in quantum field theories incorporating Lorentz

and causal dispersion relation involving Lorentz violation.21dC P T violation. No difficulties arise at low energies pro-

We therefore proceed under the assumption that spontaneotiged the coefficients for Lorentz violation are small. How-
Lorentz violation has occurred, possibly along the lines dis€Ver: local quantum field theories of fermions involving Lor-

cussed in Ref[3], and has generated nonzero expectatior?mz, _violation generically develop'difficulti(.as with either
values for the p-tensors:(B,,), (D ), ....Note that stability or causality at some scale in every inertial frame.
this assumption preservéBP'Fya,s desired On experimental and theoretical grounds, it is to be ex-
Follow the approach of Sec. VA, we directly extract rel- pecte_d that the parameters contrqlling the Lorentz @mdr
evant quadratic terms in the Lagrangian involving theviolation are Planck suppressed in any Earth-based labora-

tachyon. This procedure yields the Lagrangian tory frame. In this physical situation, except for a special
case involving a scale intermediate between the low-energy

1 and the Planck scales, the difficulties appear only for par-
£D§6M¢&“¢+(a’fl+ ko) ¢+ - - - +ky(B,,) " p3" ¢ ticles with Planck-scale energies or in inertial frames under-
going Planck-scale boosts. In particular, the detailed analysis

+ 4 Kky(D o) P I I GITh+ - - (65) can be applied to the fermion sector of the standard-model
extension, which is thereby seen to have a regime of validity

Here, the scalar parametéss, k;, k,, ... are fixed by the comparable in many respects to that expected for the usual

theory, but their specific values are irrelevant for the presenstandard model. The high-energy difficulties are character-
considerations. Each ellipsis represents quadratic terms iized by one-particle dispersion relations with tails either
volving other tensor expectation values and terms with powerossing the light cone or developing group velocities ex-

ers of 92. ceeding 1. The former result in instabilities, while the latter
For a plane-wave tachyon solution, the dispersion relatioproduce microcausality violations.
resulting from this Lagrangian takes the form As part of the analysis, we have presented the relativistic
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quantum mechanics and the quantum field theory of a masnatrix €° controlling the Lorentz andCPT violation. Ex-
sive fermion governed by the quadratic sector of a renormalpanding the determinant yields=424 terms, each a product
izable Lagrangian with general Lorentz- a@dP T-violating  of 4 matrix elements of + €°. It can be written

terms. Much of the discussion can be extended to quadratic

terms in a quantum field theory for a massive scalar with dei(l+ €% =(1+€3,)(1+ €x,)(1+€3)(1+€3)+ - - -,
Lorentz andCPT violation, by virtue of the generality of the (A1)
dispersion relatioril4) and the usual type of connection be-

tween the Dirac and Klein-Gordon equations. Some of ther/vhere;s?k denotes thgk element ofe® and the ellipsis rep-
results should also apply to the case of massless particlegssents the 23 remaining terms, none of which are at zeroth
including any massless neutrinos and the photon or othegrder in °.

gauge bosons. However, further effort is likely to be required pefinee= max €}, the matrix element with the largest
to account correctly fo_r the differences between massive angy, <, iute value. T'heél, a lower bound for the term displayed
massless representations of the Lorentz group and for ti‘\ the expansioifAl) is (1— €)*. Providede< 1, the largest

effects of gauge symmetry. Our methodology and genera - . 3
results are also applicable to nonrenormalizable terms in a(;‘llglssrg]rgfunmg terms is bounded above &l +€)”. It

effective theory. The limitation to renormalizable terms in
our analysis is largely a matter of convenience, chosen to 0 N4 3

minimize complications in the identification of the origin and dell +e)=(1-e)"~23¢(1+ )" (A2)
resolution of the difficulties with Lorentz af@P T violation. g ptraction of suitable non-negative terms from the right-

The issues with stability and causality can be resolveq,,nq side of this inequality yields
under suitable circumstances. An important ingredient in this
is the requirement of observer Lorentz invariance, which is detl + €% =(1—€)3(1— 30e). (A3)
guaranteed if the Lorentz ar@P T violation develops spon-
taneously in a Lorentz-covariant underlying theory. This pro-Explicitly, we have
vides a link between the Fock spaces constructed by different
inertial observers. In contrast, in theories based on explicit o ol o 0 0.0 1. 5
Lorentz violation instead, this condition must either be im- € = 7| €7y, T d" sy, + € +iT ys+ 59 0y, |.
posed by hand or be replaced by some otimhoccondi- (A4)
tion.

We have shown explicitly that spontaneous Lorentz andNoting the antisymmetry properties of , andg“”, we see
CPT violation in suitable nonlocal theories can generate disthat € is the sum of 16 terms, each being a product of one
persion relations avoiding the problems with stability andLorentz- andCP T-violating parameter with one of the 16
causality. In particular, the necessary structures appear in ttgamma matrices. Since the absolute value of an arbitrary
context of string field theories. We find it noteworthy that entry of any gamma matrix does not exceed 1, it follows
imposing stability and causality on quantum field theoriesfrom the definition(5) of 6° thate<168°. Together with Eq.
with Lorentz violation leads naturally both to insight about (A3), this implies
the nonrenormalizable terms emerging as the Planck scale is
approached and to requirements compatible with string field
theories. This reverses the usual chain of reasoning by which
spontaneous Lorentz ar@P T violation in some fundamen-
tal theory leads to the standard-model extension in the lowmn the trivial cases®=0, y°I'°=1 has four positive eigen-
energy limit where nonrenormalizable terms become irrelvalues. The continuity of the determinant implies this must
evant. also hold true for alls® in the above range. An eigenvalue

The analysis in this work supports the idea that a stablgign change would be accompanied by a vanishing determi-
and causal realistic fundamental theory involving spontanenant, contradicting EqA5).
ous Lorentz and P T violation exists. If so, it would lead to
potentially observable effects at sub-Planck energies de- APPENDIX B: BOUND FOR &
scribed by the Lorentz- an@ P T-violating standard-model
extension. This offers the promising possibility of providing  Equation (11) shows that the four roots of the
a unique experimental signature of Planck-scale physics. dispersion relation can be interpreted as eigenvalues of

(I% X'\ ;—M). Note that the matrix'® is invertible pro-
ACKNOWLEDGMENTS vided the spinor redefinitiod) exists, as we assume here.

: . : . ‘We proceed by obtaining an upper bound on the quaitity
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1
oro R
de(y°I'%>0, 0< 5O<480' (A5)

de(y’T'\;—y°M) #0, (B1)

APPENDIX A: BOUND FOR 4° where the factor ofy° has been inserted for convenience.
The key to boundings® is to obtain a bound on With the bound ons in hand, the continuity of the determi-

det(y°T'%) =det(l + €°) in terms of the components of the nant in Eq.(B1) as the coefficients for Lorentz ar@PT
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violation vanish then implies the same eigenenergy-sign For Eq.(B1) to hold, the kernel Of}/O(Fj)\j—M) must be

structure as occurs in the usual Dirac case.
To simplify the notation, define! and e(M) such that
Egs.(2) and(3) take the forms
Ti=yl+ 0%,

M=m+1%e(M). (B2)

An argument similar to that following EqA3) shows the
components}, and €, (M) of €/ ande(M) obey

mel, <165, €q(M)<146. (B3)
Using this notation, we can write

YUTIN = M)=9°(yINj—m)+ (eI\;— e(M)), (BY)

empty. Thus,yO(I‘j)\j— M)v #0 must hold for all complex
spinorsv. The norm|v| of v can be set to 1 without loss of
generality. A sufficient condition for the vanishing of the
kernel is then

[Hpv|?>|(e\;— e(M))v|? (B5)

for all v, where we have used E(B4).

The left-hand side of this inequality is just+m?, as can
be seen by expanding in eigenspinors oHy. An upper
bound for the right-hand side is determined by

where the first term on the right-hand side is just the usuab4(y/3- 8|X|+7m)25?, where we have used E(B3) and the
free Dirac HamiltoniarHp and the second term controls the assumptionjv|=1. Some algebra then directly yields the

Lorentz andCPT violation.

bound oné given in the text.
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