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Infrared, optical, and ultraviolet spectropolarimetry of cosmological sources is used to constrain the
pure electromagnetic sector of a general Lorentz-violating standard-model extension. The coefficients
for Lorentz violation are bounded to less than 3 3 10232.
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Lorentz violation is a promising candidate signal for
Planck-scale physics [1]. For instance, it could arise in
string theory [2] and is a basic feature of noncommuta-
tive field theories [3]. In quantum field theory at attain-
able energies, small violations can be incorporated into
the standard model to yield a general Lorentz-violating
standard-model extension [4]. Its Lagrangian consists of all
possible observer Lorentz scalars formed from standard-
model fields while allowing for coupling coefficients with
Lorentz indices. All renormalizable and gauge invariant
terms relevant at low energies are explicitly known.

The standard-model extension predicts definite experi-
mental signals. In the fermion sector of the theory, various
experiments have bounded coefficients for Lorentz viola-
tion. However, relatively little is known experimentally
about the implications of the standard-model extension for
the properties of light. In particular, no bounds have been
placed on the CPT-even coefficients for Lorentz violation
in the photon sector. In this work, we study these terms
and use spectropolarimetry of cosmological sources to ob-
tain stringent bounds on Lorentz violation comparable to
the best current limits in the fermion sector.

Extracted from the standard-model extension, the
Lorentz-violating electrodynamics can be written in terms
of the usual field strength Fmn � ≠mAn 2 ≠nAm, which
incorporates the electric field �E and the magnetic field �B.
The relevant Lagrangian terms are [4,5]

L � 2
1
4 FmnFmn 2

1
4 �kF�klmnFklFmn . (1)

The second term is CPT even and Lorentz violating. Its
coefficient �kF �klmn is dimensionless. It has the symme-
tries of the Riemann tensor and zero double trace, so it
contains 19 independent real components.

The modified inhomogeneous Maxwell equations ob-
tained from Eq. (1) are

≠aF a
m 1 �kF �mabg≠aFbg � 0 . (2)

These are supplemented with the usual homogeneous
Maxwell equations ≠m

eFmn � 0. For a plane electromag-
netic wave with wave 4-vector pa � �p0, �p�, we have
Fmn �x� � Fmn�p�e2ipaxa

. The homogeneous equations
ensure the absence of single magnetic poles, �p ? �B � 0,
and provide the usual Faraday law, p0 �B � �p 3 �E. This
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can be used to eliminate �B in the modified inhomogeneous
equations, yielding the modified Ampère law [4]

MjkEk � ���2djkp2 2 pjpk 2 2�kF�jbgkpbpg ���Ek � 0 .
(3)

The matrix Mjk is real and symmetric, which can be shown
to imply lossless propagation. The modified Coulomb law
pjMjkEk � 0 follows from this equation, in parallel with
the usual case.

For nontrivial solutions to Ampère’s law, we must re-
quire detMjk � 0. This condition provides the dispersion
relation between p0 and �p. Some calculation shows that,
to leading order in the coefficients �kF�klmn, the solutions
to the dispersion relation take the form

p0
6 � �1 1 r 6 s� j �pj , (4)

where r � 2
1
2 k̃ a

a and s2 �
1
2 �k̃ab�2 2 r2, with k̃ab �

�kF �ambnp̂mp̂n and p̂m � pm�j �pj. The solutions (4) de-
scribe behavior similar to that of spatial dispersion in an
optically inactive but anisotropic medium. In particular,
the vacuum is birefringent: light typically propagates as
two different independent modes. Substitution of the two
solutions (4) into the Ampère law (3) determines the elec-
tric fields �E6 and hence the polarization of the two modes.
For each mode, the group velocity �yg6 � �= �pp0

6 typically
differs from the phase velocity �yp6 � p0

6 �p� �p2.
At leading order in �kF�klmn, the fields �E6 are or-

thogonal and each is also perpendicular to �yg6. The
orthogonality implies that �E6 span the set of all possible
polarizations, and so the unit vectors ˆ́ 6 � �E6�j �E6j
form a basis for polarization at this order. The electric
field can then be decomposed as �E�x� � �E1 ˆ́1e2ip0

1t 1

E2 ˆ́2e2ip0
2t �ei �p?�x . Since the phase velocities of the two

modes differ, their relative phase changes as a wave propa-
gates through free space. The resulting change in the
polarization state of the wave is determined by the relative
phase change

Df � �p0
1 2 p0

2�t � 2pDypL�l � 4psL�l , (5)

where Dyp is the difference in phase velocities, l is the
wavelength, and L is the distance the radiation has traveled.
The distance dependence implies that, for sources at very
large distances, tiny differences in the phase velocities may
be observable.
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In recent years, high-quality spectropolarimetry of
distant galaxies at infrared, optical, and ultraviolet fre-
quencies has been performed [6–15]. These observations
correspond to L�l greater than 1031. We can therefore
anticipate that measurements of polarization parameters of
order 1 should provide sensitivity of order 10231 or better
to components of �kF �klmn. The inverse dependence of
Df on wavelength is a special feature exploited here to
obtain a definite bound on �kF �klmn.

In spectropolarimetry, the quantitative measurement of
polarization is usually described via Stokes parameters, de-
fined in a frame where the 3-axis coincides with the direc-
tion of propagation [16]. Introducing unit vectors ê1 and
ê2 along the 1- and 2-axes and the corresponding electric
field components as E1 and E2, the Stokes parameters can
be taken as

�s0, �s� � �jE1j
2 1 jE2j

2, jE1j
2 2 jE2j

2,

2 ReE�
1E2, 2 ImE�

1E2�
� s0�1, cos2x cos2c, cos2x sin2c, sin2x� , (6)
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where x and c are the usual polarization angles. For
convenience, we normalize throughout to s0 � 1. In the
present context, nonzero coefficients �kF�klmn leading to
a nonzero s imply a finite phase shift Df in the radia-
tion from a cosmological source, which in turn affects the
Stokes vector �s�c, x� determining its polarization. To set
a bound on Lorentz violation, we must therefore first es-
tablish quantitatively the relationships between �kF�klmn,
s, Df, and �s�c, x�.

We begin our analysis by expressing s directly using
the 19 independent components of �kF �klmn. Since s2

is a quadratic form in �kF �klmn, we can choose 19 inde-
pendent components kA, A, B � 1, . . . , 19, of �kF�klmn

and can write s2 � SABkAkB. The 19 3 19 matrix SAB

is symmetric and depends on the direction of propagation.
Some calculation shows that there exists a direction-
independent similarity transformation such that SAB

takes the form of a 19 3 19 matrix with only a 10 3 10
nonzero block. Therefore, SAB has rank 10, and only ten
linearly independent combinations ka , a � 1, . . . , 10, of
�kF �klmn appear in s. An acceptable choice for these ten
combinations is
ka � ����kF�0213, �kF �0123, �kF�0202 2 �kF�1313, �kF �0303 2 �kF �1212, �kF �0102 1 �kF�1323, �kF�0103 2 �kF �1223,

�kF �0203 1 �kF �1213, �kF�0112 1 �kF�0323, �kF �0113 2 �kF �0223, �kF �0212 2 �kF�0313��� . (7)
It now follows that s2 � S̃abkakb , where S̃ab is sym-
metric and direction dependent. The other nine linearly
independent combinations of �kF�klmn play no role in bire-
fringence, and bounding them will be the subject of a sepa-
rate investigation. For definiteness, the reference inertial
frame in which the ka are specified by Eq. (7) is chosen to
be compatible with celestial equatorial coordinates, with
the 3-axis aligned along the celestial north pole at equinox
2000.0 at a declination of 90±. The 1- and 2-axes are at
a declination of 0± and a right ascension of 0± and 90±,
respectively. The goal is to bound the ten quantities ka

defined in this frame.
The form of S̃ab is cumbersome and is omitted here. A

more convenient expression for s2 can be obtained by cal-
culating within a special inertial frame. The idea is to use
observer rotation invariance to choose a “primed” frame
in which p̂m has leading-order form p̂0m � �1; 0, 0, 1�, to
solve for the Lorentz scalar s2 in this frame in terms of
�kF �0klmn, and then to use the rotation between the celestial
equatorial frame and the primed frame to express �kF�0klmn

in terms of �kF �klmn. To match standard polarimetric con-
ventions, we choose the primed-frame basis vector ê0

3 to
point from the source towards the Earth, while ê0

1 points
south [17].

Solving the Ampère law (3) in the primed frame gives
r �

1
2 �k̃011 1 k̃022� and s2 � �k̃012�2 1

1
4 �k̃011 2 k̃022�2.

This form for s2 suggests defining an angle j such that
k̃012 � s sinj and 1

2 �k̃011 2 k̃022� � s cosj. The angle j

determines the minimal linear combinations of �kF�klmn
relevant for polarimetry of a specific source. Note that j

is frame dependent, unlike r and s.
At leading order, the polarization basis vectors in this

frame obey ˆ́6 ~ �sinj,61 2 cosj, 0� and are linearly
polarized. The corresponding Stokes vectors are �s6 �
6�cosj, sinj, 0�. The propagation from the source to the
Earth generates a relative phase change Df specified by
Eq. (5). The corresponding effect on the Stokes vector
�s�c, x� for the radiation can be regarded as a rotation by
Df about the basis vector �s1. This typically changes both
c and x.

The change in polarization depends not only on the co-
efficients �kF�klmn, the wavelength l, and the distance to
the source L, but also on the initial polarization. For cos-
mological sources, there is usually no way to determine
independently the polarization produced at the source. We
adopt instead the reasonable assumption that the source
polarization is constant over the relatively narrow band
of wavelengths being considered for each source. The
quantity of interest is then the change in relative phase
df � 4ps�L�l 2 L�l0� between a wavelength l and a
reference wavelength l0.

The rotation of the Stokes vector can be expressed via
a Mueller matrix mjk , often used to describe the effects
of filters and polarizers on light [16]. The change in the
Stokes vector is given by sj�c, x� � mjk�df�sk�c0, x0�,
where c0, x0 are reference polarization angles. Some
algebra reveals that
251304-2
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mjk�df� �

0
BB@

cos2j 1 sin2j cosdf sinj cosj�1 2 cosdf� sinj sindf

sinj cosj�1 2 cosdf� sin2j 1 cos2j cosdf 2 cosj sindf

2 sinj sindf cosj sindf cosdf

1
CCA . (8)
The polarization angle x, which measures the amount
of circular polarization, is unavailable in most published
literature on astronomical spectropolarimetry. We there-
fore focus attention here on the change dc � c 2 c0 in
the polarization angle c. After some algebra, we find

dc � 1
2 tan21 sinj̃ cosz0 1 cosj̃ sinz0 cos�df 2 f0�

cosj̃ cosz0 2 sinj̃ sinz0 cos�df 2 f0�
,

(9)

where j̃ � j 2 2c0 and f0 � tan21�tan2x0� sinj̃�,
z0 � cos21�cos2x0 cosj̃�.

To obtain a bound on the coefficients �kF �klmn, our strat-
egy is to fit Eq. (9) to polarization measurements of dis-
tant sources at multiple wavelengths. Since a single source
constrains only s and j̃ in the particular primed frame ap-
propriate for that one source, a measurement involves only
a two-dimensional surface in the ten-dimensional coeffi-
cient space. It follows that at least five different sources
are required to make a complete measurement of all the
coefficients ka.

Since the sensitivity to ka is inversely related to
wavelength, polarimetry at shorter wavelengths yields
better bounds. To maximize the sensitivity, we restrict
attention to a chosen sample of 16 sources with published
polarimetric data well suited to our purpose. Table I
lists this sample, which spans wavelengths in the range
400–2200 nm. For each source, we choose c0 as the
mean polarization angle and use Eq. (9) to create a x2

distribution for dc as a function of s, j̃, l0, x0. For
each s, j̃, we minimize with respect to l0 and x0, which
produces values consistent with expectations.

Figure 1 shows the change in the minimized distribu-
tions from their least value for the source 3CR 68.1. The

TABLE I. Source data.

Source L (Gpc) 1030L�l log10 s Ref.

IC 5063 0.04 0.56–2.8 230.8 [6]
3A 0557-383 0.12 2.2–8.4 231.2 [7]
IRAS 18 325-5925 0.07 1.0–4.9 231.0 [7]
IRAS 19 580-1818 0.13 1.8–9.1 231.0 [7]
3C 324 1.69 58–130 232.2 [8]
3C 256 1.92 70–140 232.2 [9]
3C 356 1.62 57–120 232.2 [10]
F J084044.5 1 363 328 1.71 62–120 232.2 [11]
F J155633.8 1 351 758 1.82 67–110 232.2 [11]
3CR 68.1 1.70 59–130 232.2 [12]
QSO J2359-1241 1.48 87–90 231.1 [13]
3C 234 0.55 51–75 231.7 [14]
4C 40.36 2.02 73–160 232.2 [15]
4C 48.48 2.04 75–160 232.2 [15]
IAU 0211-122 2.04 74–160 232.2 [15]
IAU 0828 1 193 2.08 78–160 232.2 [15]
contour with Dx2 � x2 2 x
2
min � 50 is displayed in

the j̃- logs plane. This corresponds to confidence level
�100 1029�%, which we regard as sufficient for a definite
bound. Only 290± # j̃ # 90± need be considered, since
dc is symmetric under j̃ ! j̃ 6 180±. The general
shape of this plot is common to all sources. Each source
eliminates some region of coefficient space away from
s � 0, j̃ � 0, 690±, which are the only configurations
for which the theory predicts no change in the polarization
angle. In principle, by combining data from multiple
sources it would be possible to eliminate the regions near
j̃ � 0, 690± for all the sources. However, in the present
context it suffices to make the reasonable assumption
that the true signal does not lie in these regions for all
the sources. Under this assumption, we have chosen
conservative bounds on s for each source, listed in the
fourth column of Table I. For the source 3CR 68.1, the
bound is shown as a horizontal line across Fig. 1.

To estimate the constraint on ka that results from com-
bining these bounds, we assume that the data for each
source are consistent with s � 0. The bounds on s can
then be regarded as conservative estimates of the error ds

in a null measurement of s. We then create a second
x2 distribution, x2 �

P
j�sj�2��dsj�2, where j ranges

over the 16 sources. Constant values of this distribution
correspond to ten-dimensional ellipsoids in the coefficient
space. Taking the magnitude jkaj �

p
kaka of ka as the

variable of interest and minimizing x2 with respect to the
other 9 degrees of freedom produces a constraint on jkaj.
Our conservative estimates yield jkaj , 3 3 10232 at the
90% confidence level.

As a check on this constraint, we have performed a grid
search on the ten-dimensional space of coefficients ka .
Fixing the magnitude of the ten-dimensional vector ka

in Eq. (7) leaves a nine-dimensional sphere. For a given
point on the sphere, s and j̃ for each source can be found
and the value of x2 obtained using the minimized x2

plots. Summing over sources yields a net x2 minimized
with respect to all parameters other than the coefficients
ka. A grid search on the nine-sphere with points separated
by about 5 degrees of arc was used to find the minimum
net x2. Repeating for different values of jkaj gives results
confirming our bound. To check our procedure directly,
we also generated synthetic polarization data with a known

lo
g 10

σ

ξ
~

-33

-32

-50 0 50

FIG. 1. Contour with Dx2 � 50 for the source 3CR 68.1.
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faux Lorentz-violating signal and verified that our proce-
dure correctly extracts it. Note that the absence of a signal
emerging from our analysis indicates that systematic ef-
fects are irrelevant. To generate a false signal, these would
need to mimic the expected direction and wavelength
dependence.

No previous bounds on the coefficients �kF�klmn

exist. However, constraints on different Lorentz-violating
coefficients in the fermion sector of the standard-model
extension have been obtained from studies of neutral-
meson oscillations [18–21], comparative tests in Penning
traps [22–25], spectroscopy of hydrogen and antihydro-
gen [26,27], measurements of muon properties [28,29],
clock-comparison experiments [30–32], observations of
the behavior of a spin-polarized torsion pendulum [33,34],
and studies of the baryon asymmetry [35]. The constraint
reported here is comparable to the best of these existing
limits, presently a few parts in 1031.

An improved bound could be obtained as more high-
quality data become available, particularly if measure-
ments of the polarization angle x could be incorporated
in the analysis. Also, the sensitivity to inverse wavelength
implies that spectropolarimetry of cosmological sources at
frequencies above the ultraviolet band would be of interest.
The technology to undertake x-ray polarimetry of cosmo-
logical sources is presently being developed [36], which
suggests an improvement of several orders of magnitude
may eventually be attainable.
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