403 research outputs found

    Tree Diversity Drives Forest Stand Resistance to Natural Disturbances

    Get PDF
    Purpose of review Forests are frequently exposed to natural disturbances, which are likely to increase with global change, and may jeopardize the delivery of ecosystem services. Mixed-species forests have often been shown to be more productive than monocultures, but it is unclear whether this results from mixed stands being in part more resistant to various biotic and abiotic disturbance factors. This review investigates the relationships between tree diversity and stand resistance to natural disturbances and explores the ecological mechanisms behind the observed relationships.Recent findings Mixed forests appear to be more resistant than monocultures to small mammalian herbivores, soil-borne fungal diseases and specialized insect herbivores. Admixing broadleaves to conifers also increases the resistance to fire and windstorms when compared to pure conifer stands. However, mixed forests may be more affected by drought depending on the species in the mixture.Summary Overall, our findings suggest that mixed forests are more resistant to natural disturbances that are relatively small-scale and selective in their effect. However, benefits provided by mixtures are less evident for larger-scale disturbances. Higher tree diversity translates into increased resistance to disturbances as a result of ecological trait complementarity among species, reduction of fuel and food resources for herbivores, enhancement of diversion or disruption processes, and multi-trophic interactions such as predation or symbiosis.To promote resistance, the selection of tree species with different functional characteristics appears more important than increasing only the number of species in the stand. Trees with different levels of susceptibility to different hazards should be intermixed in order to reduce the amount of exposed resources and to generate barriers against contagion.However, more research is needed to further improve associational resistance in mixed forests, through a better understanding of the most relevant spatial and temporal scales of species interactions and to optimize the overall provision of ecosystem services

    Evidence maps and evidence gaps: evidence review mapping as a method for collating and appraising evidence reviews to inform research and policy

    Get PDF
    Evidence reviews are a key mechanism for incorporating extensive, complex and specialised evidence into policy and practice, and in guiding future research. However, evidence reviews vary in scope and methodological rigour, creating several risks for decision-makers: decisions may be informed by less reliable reviews; apparently conflicting interpretations of evidence may obfuscate decisions; and low quality reviews may create the perception that a topic has been adequately addressed, deterring new syntheses (cryptic evidence gaps). We present a new approach, evidence review mapping, designed to produce a visual representation and critical assessment of the review landscape for a particular environmental topic or question. By systematically selecting and describing the scope and rigour of each review, this helps guide non-specialists to the most relevant and methodologically reliable reviews. The map can also direct future research through the identification of evidence gaps (whether cryptic or otherwise) and redundancy (multiple reviews on similar questions). We consider evidence review mapping a complementary approach to systematic reviews and systematic maps of primary literature and an important tool for facilitating evidence-based decision-making and research efficiency

    Biotic and abiotic drivers of soil microbial functions across tree diversity experiments

    Get PDF
    Aim Soil microorganisms are essential for the functioning of terrestrial ecosystems. Although soil microbial communities and functions may be linked to the tree species composition and diversity of forests, there has been no comprehensive study of how general potential relationships are and if these are context-dependent. A global network of tree diversity experiments (TreeDivNet) allows for a first examination of tree diversity-soil microbial function relationships across environmental gradients. Location Global Major Taxa Studied Soil microorganisms Methods Soil samples collected from eleven tree diversity experiments in four biomes across four continents were used to measure soil basal respiration, microbial biomass, and carbon use efficiency using the substrate-induced respiration method. All samples were measured using the same analytical device in the same laboratory to prevent measurement bias. We used linear mixed-effects models to examine the effects of tree species diversity, environmental conditions, and their interactions on soil microbial functions. Results Across biodiversity experiments, abiotic drivers, mainly soil water content, significantly increased soil microbial functions. Potential evapotranspiration (PET) increased, whereas soil C-to-N ratio (CN) decreased soil microbial functions under dry soil conditions, but high soil water content reduced the importance of other abiotic drivers. Tree species richness and phylogenetic diversity had overall similar, but weak and context-dependent (climate, soil abiotic variables) effects on soil microbial respiration. Positive tree diversity effects on soil microbial respiration were most pronounced at low PET, low soil CN, and high tree density. Soil microbial functions increased with the age of the experiment. Main conclusions Our results point at the importance of soil water content for maintaining high levels of soil microbial functions and modulating effects of other environmental drivers. Moreover, overall tree diversity effects on soil microbial functions seem to be negligible in the short term (experiments were 1-18 years old). However, context-dependent tree diversity effects (climate, soil abiotic variables) have greater importance at high tree density, and significant effects of experimental age call for longer-term studies. Such systematic insights are key to better integrate soil carbon dynamics into the management of afforestation projects across environmental contexts, as today’s reforestation efforts remain focused largely on aboveground carbon storage and are still dominated by less diverse forests stands of commercial species

    Sex-Differential Herbivory in Androdioecious Mercurialis annua

    Get PDF
    Males of plants with separate sexes are often more prone to attack by herbivores than females. A common explanation for this pattern is that individuals with a greater male function suffer more from herbivory because they grow more quickly, drawing more heavily on resources for growth that might otherwise be allocated to defence. Here, we test this ‘faster-sex’ hypothesis in a species in which males in fact grow more slowly than hermaphrodites, the wind-pollinated annual herb Mercurialis annua. We expected greater herbivory in the faster-growing hermaphrodites. In contrast, we found that males, the slower sex, were significantly more heavily eaten by snails than hermaphrodites. Our results thus reject the faster-sex hypothesis and point to the importance of a trade-off between defence and reproduction rather than growth

    A review of the phytochemical support for the shifting defence hypothesis

    Get PDF
    Several theories have been developed to explain why invasive species are very successful and develop into pest species in their new area. The shifting defence hypothesis (SDH) argues that invasive plant species quickly evolve towards new defence levels in the invaded area because they lack their specialist herbivores but are still under attack by local (new) generalist herbivores. The SDH predicts that plants should increase their cheap, toxic defence compounds and lower their expensive digestibility reducing compounds. As a net result resources are saved that can be allocated to growth and reproduction giving these plants a competitive edge over the local plant species. We conducted a literature study to test whether toxic defence compounds in general are increased in the invaded area and if digestibility reducing compounds are lowered. We specifically studied the levels of pyrrolizidine alkaloids, a toxin which is known for its beneficial and detrimental impact against specialists and generalists, respectively. Digestibility reducers did not show a clear trend which might be due to the small number of studies and traits measured. The meta analysis showed that toxic compounds in general and pyrrolizidine alkaloid levels specifically, increased significantly in the invaded area, supporting the predictions of the SDH that a fast evolution takes place in the allocation towards defence

    Increased Resistance of Bt Aspens to Phratora vitellinae (Coleoptera) Leads to Increased Plant Growth under Experimental Conditions

    Get PDF
    One main aim with genetic modification (GM) of trees is to produce plants that are resistant to various types of pests. The effectiveness of GM-introduced toxins against specific pest species on trees has been shown in the laboratory. However, few attempts have been made to determine if the production of these toxins and reduced herbivory will translate into increased tree productivity. We established an experiment with two lines of potted aspens (Populus tremula×Populus tremuloides) which express Bt (Bacillus thuringiensis) toxins and the isogenic wildtype (Wt) in the lab. The goal was to explore how experimentally controlled levels of a targeted leaf beetle Phratora vitellinae (Coleoptera; Chrysomelidae) influenced leaf damage severity, leaf beetle performance and the growth of aspen. Four patterns emerged. Firstly, we found clear evidence that Bt toxins reduce leaf damage. The damage on the Bt lines was significantly lower than for the Wt line in high and low herbivory treatment, respectively. Secondly, Bt toxins had a significant negative effect on leaf beetle survival. Thirdly, the significant decrease in height of the Wt line with increasing herbivory and the relative increase in height of one of the Bt lines compared with the Wt line in the presence of herbivores suggest that this also might translate into increased biomass production of Bt trees. This realized benefit was context-dependent and is likely to be manifested only if herbivore pressure is sufficiently high. However, these herbivore induced patterns did not translate into significant affect on biomass, instead one Bt line overall produced less biomass than the Wt. Fourthly, compiled results suggest that the growth reduction in one Bt line as indicated here is likely due to events in the transformation process and that a hypothesized cost of producing Bt toxins is of subordinate significance
    corecore