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The Problem of Informal “Expert” 
Assessment of Research Findings

Scientists often deal with vast amounts of data, and the ability to summarize this informa-
tion effectively is a major asset. Therefore, researchers make a considerable effort to acquire 
the necessary statistical skills to rigorously analyze each empirical data set that they collect. 
The same thoroughness should occur when writing up work for publication, which ideally 
requires synthesis of the scientific literature for each question that is answered (i.e. statistical 
test conducted) to place the results in context. This synthesis is a real challenge. One thing that 
makes it challenging for ecologists and evolutionary biologists to stay up to date with research 
findings is that, in so doing, they usually try to place their own results in a much broader con-
text. This means that they often do not confine their frame of reference to studies of the same 
species, taxon, or ecosystem. There is, not unexpectedly, evidence that those working on a 
taxon studied by relatively few researchers are more likely to cite studies of other more popular 
study systems. For example, herpetologists more often cite studies of other classes of verte-
brate than those studying mammals or birds cite reptilian studies (Bonnet et al. 2002; see also 
Taborsky 2009). In ecology and evolutionary biology, one reason for the inclusion of citations 
following specific research results is to illustrate the extent to which the author’s results agree 
or disagree with the findings of others. Arguably, the most common way researchers assess the 
“level of agreement” is to consult reviews, including meta-analyses, to reach a general conclu-
sion (e.g., most studies report a positive finding), which they can then claim their own study 
supports or contradicts. 

The validity of any assessment of general findings depends on the rigor of the review used to 
inform this judgment. If the review is a meta-analysis, one can be fairly certain that the confi-
dence intervals for the mean trend provide a reasonable quantitative summary of the available 
studies. If it is a narrative review, then the potential for a subjective bias on the part of the re-
viewer, including reliance on “expert opinion,” which is surprisingly often flawed or erroneous 
(Surowiecki 2004), is more worrisome. The general conclusions drawn have a strong bearing 
on how research findings are presented (i.e., whether we describe results as refuting or support-
ing a general trend), and therefore have a major impact on the future direction of a researcher’s 
own work and that of their colleagues (e.g., few researchers will ask a question if publications 
repeatedly state that we already know the answer).
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In practice, reviews usually cover broad rather than specific questions. For example, it is 
easy to locate a review of the evolution of female mate choice, but finding one on the exact 
relationship between male advertisement call pitch and female mating preferences in frogs is 
more difficult. Consequently, attempts to summarize the findings of previous studies that tackle 
a specific question are rarely based on consultation of a quantitative, or even narrative, review. 
This can result in a highly idiosyncratic data synthesis process because each author must con-
duct their own separate review for every finding they wish to comment upon. This can lead to 
problems. Extrapolating from our own behavior and that of colleagues, many researchers tend 
to compile lists of papers that tackle a specific question. They then categorize these as reporting 
a significant positive or negative relationship, or failing to do either. Some researchers are dis-
ciplined and maintain spreadsheets of categorized publications, others are content with simply 
relying on their memory. If these lists were simply drawn upon to cite studies that have looked 
at the same question there would be no real concern. The problem, however, is that there is a 
temptation to tally up studies in an informal “vote count” (Chapter 1) and draw conclusions 
about general patterns. Aside from the problem that vote counting is a poor method to calculate 
trends, there is the underlying concern that the studies being tallied are a biased sample of those 
that have been conducted. 

For many research questions (especially those subsidiary to the main focus of a study), it is 
probably fair to state that a good number of researchers simply consult a few recent papers and 
make a judgment as to the average outcome based on how many studies are cited as supporting 
or refuting a hypothesis. This raises a question: Are the cited studies a random sample of all 
those conducted? The answer in almost all cases is “no.” Another commonly used shortcut to 
identify general trends is to simply accept at face value a published statement by a colleague 
that empirical support for a predicted outcome is rare or common. This is based on the assump-
tion that he or she is an expert who has been more systematic in their review of the literature. 
This kind of copying can readily lead to a positive feedback loop (because authors rely on cita-
tions in the published literature that they themselves contribute to), and the emergence of fads 
and fashions with no link between the popular consensus and reality if the experts that initiate 
the feedback are wrong (Bikhchandani et al. 1992). Expert opinion is notoriously unreliable 
because many experts simply rely on their own biased and qualitative assessment of the litera-
ture (e.g., Antman et al. 1992).

A pragmatic approach to synthesizing the literature based on brief consultation of a subset of 
the published studies is understandable given time constraints. Even so, the potential for this to 
lead to misinformation should be readily apparent if citation and publication practices (which 
also inform “expert opinion”) are associated with research findings (Chapter 14). First, judg-
ment calls as to where the weight of evidence lies are often based on such factors as the relative 
ease with which one can recall studies that report positive and negative results. Unfortunately, 
humans have a propensity to recall certain events more readily than others; they are also prone 
to a range of other cognitive biases (Piatelli-Palmarini 1994). This can generate substantial 
memory bias as to the rate of occurrence of different types of events, such as pleasurable and 
painful experiences (Gilbert 2006). Although we are unaware of any formal investigation, it is 
worthwhile considering whether there is a greater likelihood of recalling a study that reports a 
highly significant relationship than one that fails to do so. Second, the findings of a study appear 
to influence the ease with which it is located in the literature, so careful attention must be paid to 
the potential for sampling bias. For example, the papers that appear to be more readily remem-
bered and cited are those published in English in high-profile journals, and written by influential 
researchers, large research teams, or those working in the same country (Leimu and Koricheva 
2005b, Wong and Kokko 2005). This is a potential problem because, due to publication bias, 
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some of these factors are associated with effect sizes and/or their variances (i.e., our statistical 
confidence in the estimate; Chapter 14). This could create a large discrepancy between the “con-
ventional wisdom” of what has been shown by previous studies based on an informal summary 
of findings from more readily located or remembered work, and the outcome of a quantitative 
meta-analysis based on a well-defined sampling protocol (Chapters 3 to 5).

Some might argue that errors made during an informal assessment of a field are only a short-
term problem because the truth will eventually prevail when a formal quantitative analysis is 
conducted. We think this attitude is counterproductive. In ecology and evolutionary biology, a 
decision on whether or not to test a hypothesis is largely dictated by the decisions of individual 
researchers, rather than panels or committees that determine policy and direct research. Unlike 
the sponsorship of research in some areas in the health sciences, natural science funding bodies 
do not require a formal meta-analysis as part of a grant application. They take it on good faith 
if the applicants state that they will work on a poorly studied or unresolved issue. At best, they 
seek confirmation from peer review and rely on “expert opinion” that, as already noted, is often 
flawed (Antman et al. 1992). This can lead to an enormous waste of resources if studies are de-
signed to ask questions that have already been satisfactorily answered (although perhaps not in 
the same study system, but in a more general sense). In the medical sciences, for example, the 
use of cumulative meta-analysis has shown that costly large-scale trials have sometimes been 
conducted long after the efficacy of a treatment could be established through meta-analysis 
(Chapter 15). Conversely, systematic reviews that identify gaps in usable data (e.g., Stewart, 
Pullin, and Tyler 2007) or the potential for strong publication bias (Palmer 2000), reveal cases 
where phenomena that are widely described as well-established turn out to be unproven or 
disputable and therefore worthy of closer study. Anyone who has conducted a meta-analysis 
is familiar with the regularity with which well-known papers purporting to demonstrate a phe-
nomenon either fail to do so, or do so without providing reliable information about the biologi-
cally relevant magnitude of the effect.

In the health sciences there are obvious ethical concerns about delays in the implementation 
of effective treatments and the associated problem of unnecessary research and badly presented 
research. For example, it was shown that studies continued to be conducted and patients as-
signed to control groups long after the efficacy of a treatment was demonstrated statistically 
(e.g., Fergusson et al. 2005 found that 52 more studies than necessary were conducted in one 
area of medicine; Chapter 15). This concern led the editors of the prestigious medical journal 
The Lancet to change the submission requirements for studies describing the results of new 
clinical trials. The authors are now asked to include a “clear summary of previous research 
findings, and to explain how their trial’s findings affect this summary.” The journal also asks 
for the following: “The relation between existing and new evidence should be illustrated by 
direct reference to an existing systematic review and meta-analysis. When a systematic review 
or meta-analysis does not exist, authors are encouraged to do their own. If this is not possible, 
authors should describe in a structured way the qualitative association between their research 
and previous findings” (Young and Horton 2005, 107). Although it seems unlikely to happen 
soon, a similar policy in ecological and evolutionary journals would be welcome.

Ideally, continually updated meta-analyses would be available for every research question 
posed for which sufficient information exists. Clearly this is not going to happen, but are there 
practical measures that can be implemented now? To start, we need to acknowledge that our 
potentially subjective and informal approach to synthesizing past work has created a scien-
tific culture with an undue emphasis on P-values, simply because they allow studies to be 
designated as valuable, or ignored as inconclusive. An unfortunate byproduct of this practice 
is an unwarranted reliance on the information that can be extracted from an individual study, 
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especially one that reports a highly significant result. Specifically, we tend to treat studies with 
low P-values as being correct (or at least irrefutable), and discard studies with less clear-cut 
or nonsignificant findings when considering past work. This is a poor practice because a high 
percentage of positive (i.e., P < 0.05) results might actually be false; for a fascinating review, 
see Ioannidis 2005c, and see Ioannidis 2008 for a review of the related issue of inflated esti-
mates. Ioannidis (2005c) derives simple equations to predict the poststudy probability that a 
statistically significant result is true (i.e., that the actual effect differs from the null value). A 
key equation is that a positive result is more likely true than false when (1 - b )R > a . Here 
1 - b = power (i.e., 1 -  type II error rate), R = ratio of true effects to no effects in the field of 
study, and a is the type I error rate (usually 0.05). Consequently, the proportion of false positive 
results is higher when sample sizes are small and true effects are weak (as these decrease sta-
tistical power). Ioannidis (2005c) similarly presents equations to show how both a publication 
bias toward positive results (e.g., due to multiple testing and selective reporting) and increased 
numbers of researchers testing the same question further increase the proportion of false posi-
tive results. These insights should be of particular concern in ecology and evolutionary biology 
because in these fields (1) studies often have low sample sizes (Jennions and Møller 2003); (2) 
true effect sizes are often small (Møller and Jennions 2002); (3) numerous relationships are 
usually tested because studies are often exploratory so R can be small (e.g., whether extinction 
risk is related to body size, population size, sexual dimorphism, diet, clutch size, and so on); (4) 
statistical approaches are not formalized even when data sets have identical structures, which 
encourages “statistical fishing”; (5) several outcome variables are usually examined (e.g., ef-
fects of elevated CO2 on growth of different plant parts, osmoregulation, or rates of photo
synthesis) all of which can, post hoc, be described as important; and (6) in some “hot topic 
areas,” such as climate change, numerous research teams are each testing the same hypotheses 
(e.g.. whether the onset of breeding moved forward in species X in the last 40 years).

What can be done to help researchers better summarize developments in ecology and evolu-
tion? Readers of Chapter 1 will hopefully agree that a modern meta-analysis offers a research 
summary that is superior to vote counting based on critical P-values or to (worse still) reliance 
on statements about the strength of relationships taken from narrative reviews. Of course, when 
a published meta-analysis is unavailable a researcher must rely on their own synthesis of the 
field. Papers report P-values rather than effect sizes, so the path of least resistance is to filter 
primary studies through the sieve of threshold P-values. The solution is two-pronged, and will 
ensure a more mature approach to the assessment of statistics and create conditions that should 
make quantitative reviews easier to conduct. First, ecological and evolutionary journals must 
encourage the reporting of a wider spectrum of outcomes (e.g., 95% confidence intervals for ef-
fect sizes, investigation of sources of heterogeneity among studies), rather than P-values (if the 
95% CI does not overlap the null value, the reader immediately knows that P < 0.05 anyway). 
Second, researchers must learn to evaluate studies in terms of this wider spectrum of outcomes, 
rather than P-values. Figure 23.1 illustrates the interacting impact of a range of measures on a 
meta-analysis, including not only the effect estimate, but also sample sizes and the correspond-
ing confidence intervals.

The approach we take in the remainder of this chapter is motivated by our own real world 
experiences as ecologists and evolutionary biologists who have conducted meta-analyses. Col-
lating data for a meta-analysis invariably leads to a shift from a worldview where the focus is 
on seeking the truth based on single “perfect” studies (“textbook examples,” Chapter 1) to one 
that regards the literature as a population of studies, each with one or more effect sizes. These 
effect sizes are estimates of the “true” effect size so that their pooled magnitude, variance, 
and heterogeneity become the real focus of attention. We therefore begin with a brief review 
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of why effect sizes and their variances (usually expressed as confidence intervals) are more 
informative than P-values. We then discuss how meta-analysis promotes “effective thinking” 
(Nakagawa and Cuthill 2007) that can change approaches to several commonplace problems. 
Specifically, we address the issues of (1) exemplar studies versus average trends, (2) resolving 
“conflict” between specific studies, (3) presenting results, (4) deciding on the level at which to 
replicate studies, (5) understanding the constraints imposed by low statistical power, and (6) 
asking broad-scale questions that cannot be resolved in a single study.

In this chapter, we focus on estimating effect sizes as a key outcome of meta-analysis, but 
acknowledge that other outcomes might be of more interest in other situations. These could in-
clude, for example, comparisons between effect sizes, hypothesis testing, evaluation of moder-
ators of effect sizes, and identifying other sources of heterogeneity between studies. However, 
we would argue that the points we make in the context of estimating effect sizes apply more 
generally to this wider meta-analysis spectrum. We should note that, for brevity, we often do 
not distinguish between parameter estimation and hypothesis testing. The standard null hypoth-
esis in most areas of ecology and evolutionary biology is that a measured parameter (the “effect 
size” in a meta-analysis) has a mean value of zero or a nonzero theoretically predicted value 
(e.g., for allometric scaling, see Chapter 24). In some cases, however, parameters are estimated 
without being used to test a formal hypothesis (e.g., the annual rate of decline in coral cover).

Effect Sizes Versus P-Values

Ecologists and evolutionary biologists have continually been encouraged to switch from a 
frequentist approach of null hypothesis significance testing (i.e., whether P-values cross a 
threshold value like 0.05) toward other statistical approaches in order to summarize their re-
search findings (e.g., Fernandez-Duque 1997, Johnson 1999, Stoehr 1999, Jennions and Møller 
2003, Nakagawa 2004). These calls have largely gone unheeded. For example, adoption of 
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Figure 23.1. The relationship between P-value, sample size, estimated mean effect size (in this 
case r, Pearson’s correlation coefficient), and confidence intervals showing the effect of a change 
in sample size with the same level of significance (modified from Nakagawa and Cuthill 2007).
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Bayesian approaches has been erratic and has only occurred in some subdisciplines (Ga-
ramszegi et al. 2009). This is probably because established biologists lack the time to master 
unfamiliar statistical theory, and user-friendly software is limited (although more recent in-
troductory textbooks for ecologists might facilitate a shift; e.g., McCarthy 2007). In contrast, 
the suggestion that ecologists and evolutionary biologists summarize data by presenting effect 
sizes and their confidence intervals is a relatively undemanding request. Suitable software ex-
ists and effect sizes are readily conceptualized as “sample size corrected” versions of familiar 
test statistics such as F or t. In other words, these test statistics are formulated by combining 
effect and sample sizes (Rosenthal 1994; Chapters 6 and 7).

Why then are data in almost every ecological and evolutionary paper still summarized using 
P-values? Researchers are perhaps unaware of the benefits that reporting effect sizes offer. This 
is understandable when one considers that the benefits often accrue to the scientific community 
(e.g., the ability to conduct a meta-analysis) rather than to the individual author, who might 
even pay a cost. For example, if P < 0.01 and the average referee currently takes this as a sign 
of a “clean result,” why reduce the chance of publication by reminding referees that the esti-
mated effect size is small or the confidence interval wide? More practically, researchers often 
do not know how to calculate effect sizes and their variances. This might be easy for many 
standard test statistics, but it is trickier for others (Chapters 6 and 7; Nakagawa and Cuthill 
2007). Reviewers are not known for their leniency toward those who say: “I did the right thing 
and used approach X, except when it was really tricky and would have taken me ages to work 
out how to do it.” Editors would, however, be doing the fields of ecology and evolutionary 
biology a service if they at least required authors to provide effect sizes for a prescribed set of 
simple statistical tests such as unpaired t-tests or F-values from one-way ANOVAs. Of course, 
the growing use of meta-analysis (Chapter 1) might, by itself, stimulate a change in how statis-
tical tests are reported. Experience suggests, however, that reporting effect sizes in primary em-
pirical studies will not become widespread until journals make it a prerequisite. Otherwise, it 
merely adds another chore to the publication process with no obvious reward to the researcher.

So why report effect sizes? Presenting effect sizes and their confidence intervals allows for 
better interpretation of data than examination of P-values. The standard null hypothesis is that 
no relationships between variables or differences among groups exist. P-values simply indicate 
the likelihood that a relationship or difference as or more extreme than that observed will occur 
if the null hypothesis is true. In short, a P-value only tells us whether the 95% confidence inter-
val for an effect size includes the null expectation. This creates a dichotomy that can be handy, 
but can mislead the unwary reader because it ignores both the width and central location of the 
confidence interval. These two extra pieces of information can lead to a radical reassessment 
of a result initially interpreted solely on the basis of P-values. For example, many researchers 
might agree with the statement that a relationship in their field of study is important if they are 
only told that P < 0.01. They would, however, probably revise their opinion if informed that the 
95% CI is r = 0.03 to 0.16 (e.g., when n  1000) because the fairly narrow confidence interval 
means that the true correlation is probably weak. Similarly, if P < 0.01, even if the estimated 
effect is large, say r = 0.49, researchers would probably not describe the relationship as strong 
when told that the 95% CI was r = 0.12 to 0.74 (e.g., when n  25) because the estimate is so 
imprecise. Finally, even when a result is nonsignificant, any biological interpretation should 
be influenced by the width of the confidence interval. If large (e.g., r = -0.30 to 0.45), we 
recognize that the data are inconclusive; if small we can conclude that an effect is either weak 
or absent. In sum, P-values are only biologically meaningful when sample sizes are taken 
into account. (Even then, information on the direction of the relationship is essential. Though 
a seemingly obvious point, this is information that often goes unreported when presenting 
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nonsignificant results (e.g., Cassey et al. 2004)). Graphical presentation of effect sizes is an 
efficient way to reveal the limits of using P-values (see Fig. 23.1 taken from Nakagawa and 
Cuthill 2007).

Are we exaggerating the problem? To drive home the danger of focusing on P-values it is 
worth answering a simple question: How often have you responded to a colleague’s query 
about your latest study by saying something like, “great news, we got a significant result,” 
without any mention of sample size and thus the effect size or its confidence interval? Most of 
us, if honest, can only reply, “I do that all the time.” This illustrates the point that, in practice, 
we fail to distinguish between studies A to D, and often lump together studies E to G in Figure 
23.1 when we present our research findings to others. The take-home message gleaned from 
casual conversations about other people’s studies (whether it was a positive or negative result) 
is very similar to the information we retain when we finish reading a paper and rely on P-values 
to summarize what was reported. For those interested in an extended but readable account of 
the benefit of using effect sizes rather than P-values for ecologists we recommend Nakagawa 
and Cuthill (2007).

What Is So Great about Your Study?

It is useful to think of the practice of science as involving two competing tasks. First, to rep-
licate precisely any study that produces an exciting result to validate the finding. Second, to 
make broad generalizations that can predict or account for events across a wider range of cir-
cumstances (Chalmers 1999). In some respects, these conflicting demands mirror the extent to 
which different researchers emphasize individual P-values or the distribution of effect sizes. 
This is because study replication is often associated with confirming that a prior study with a 
positive result was valid (for a more detailed discussion of what constitutes successful replica-
tion, see Kelly 2006), while generalization is usually associated with estimating the mean and 
variance (and sometimes sources of heterogeneity) in effect sizes across a range of studies (i.e., 
meta-analysis). The tension between these demands can be acute for ecologists and evolution-
ary biologists because (1) biological systems that are nominally the same actually vary spatially 
and temporally, so it is unclear what constitutes satisfactory replication of a study; and (2) the 
variety of available study systems is immense so that controversies arise as to the appropriate 
level at which to seek generalities. For example, Palmer (2000) has described all studies that 
are replicated using different species or systems as “quasi replication.” Some workers go so far 
as to argue that ecology is “a highly idiographic science best served by amassing a catalogue of 
case studies” (Simberloff 2006b, 921), while others prefer to seek generalities. An example of 
the debate this engenders is seen in the contrasting viewpoint of Gurevitch (2006) and Simber-
loff (2006a, 2006b) on how best to study the interactions between native and invasive species 
in testing for the existence of “invasional meltdowns.”

Meta-analysis is a quantitative framework to answer questions about the mean strength and 
sources of variation in relationships across studies. However, because it has been underutilized 
by ecologists and evolutionary biologists, greater emphasis has been placed on the value of 
individual studies. Unfortunately, and perhaps as a result, a bizarre practice has crept into many 
areas of ecology and evolutionary biology; this is to identify a key study (often based on little 
more than a small P-value and/or a large response) and then extrapolate from its findings to a 
wider set of circumstances. In its crudest form this results in the deification of classic studies 
in textbooks, which are treated as exemplars of a wider reality (“textbook examples,” Chapter 
1). This approach might be defensible in disciplines where the phenomenon under study is 
relatively invariant, but it is almost certainly inappropriate in ecology and evolutionary biology 
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given the obvious biological differences among populations (with even more variation among 
species or higher taxa), the amount of background “environmental noise” in most studies, and 
large measurement error in many subdisciplines (e.g., evolutionary fitness is notoriously dif-
ficult to measure). The weakness of this approach to the literature is driven home if one calcu-
lates the probability that a single study will report the true mean effect size, even when we are 
only interested in knowing this for a single population under identical conditions. If one thinks 
in terms of a population of effect sizes measured with error, it is clearly improbable that this 
single study—especially given a publication bias favoring stronger findings—will report the 
true mean effect size. (For example, assuming a normal distribution, for any given study there 
is a 32% chance that its effect size will be more than one standard deviation from the true mean, 
and a 5% chance it is more than 1.96 standard deviation from the true mean.)

The medical literature provides numerous cautionary tales of the dangers of an overreli-
ance on single studies, no matter how comprehensive. One critique of meta-analysis (which 
often combines estimates from smaller and larger studies) is that the final conclusion (e.g., of 
whether a medical intervention is effective) sometimes differs from that reached in large-scale, 
controlled randomized trials (“megatrials”); the latter have historically been seen as the pre-
ferred “gold standard” (comparisons are summarized in Ioannidis et al. 1998, Lau et al. 1998). 
It has, however, been pointed out that the results of megatrials can differ from each other as 
much as they do from the pooled estimates derived from a meta-analysis (Furukawa et al. 
2000; for case studies of this phenomenon in conservation biology see Chapter 26). Large-scale 
clinical trials draw on a homogenous pool of research subjects (a single species), use the same 
rigorous methodologies (double-blind trials), and have very large sample sizes (1000 to 10,000 
subjects). It is therefore apparent that even when uniformity is maximized, there are still un-
known sources of heterogeneity that affect the outcome of a treatment. This problem of study 
heterogeneity is likely to be far greater in ecology and evolutionary biology.

Given the obvious biological variation among ecosystems and species, and research budgets 
of ecologists and evolutionists that usually preclude sample sizes in the ten thousands, it is 
foolhardy to conclude too much from the outcome of any single study no matter how compre-
hensive it is. The long-term studies of the life histories and demography of red deer on the Isle 
of Rhum and Soay sheep in Scotland (Clutton-Brock and Coulson 2002), or the demographics 
of rainforest trees on the 50 ha plot in Panama (Condit et al. 1995) are model examples of the 
very best ecological data sets we have from single studies. Even these studies are, however, 
unlikely to estimate precisely the average strength of relationships if we want to build up a 
picture for a broader range of species or forest types. Worse still, due to temporal variation, 
even these studies have reported different effects depending on the time interval over which 
data were analyzed. For example, the effect of maternal body condition on offspring sex ratio 
was eventually shown to vary with population density in red deer (Kruuk et al. 1999), and 
demographic patterns vary among rainforest sites only short distances apart within Panama 
(Condit et al. 2005).

Are We Really So Different?

Preoccupation with exemplary studies can generate a mythical quest for the “ideal” study. 
Many researchers will flatly state that they conducted their study because previous tests of a 
hypothesis yielded contradictory outcomes. An unflattering but plausible interpretation of their 
statement is that they implicitly believe that the earlier studies were flawed, and a new study 
is required in which all confounding variables are controlled to obtain the true answer. If one 
is interested in making generalizations, this view is patently absurd. There is no one set of 
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conditions that create the perfect study, unless one wants to generate a hypothesis that is con-
fined to one species, in one place, at a single point in time. This is a pointless task for ecologists 
and evolutionary biologists.

The myth of the “perfect study” creates a mindset where the main aim of a researcher might 
be to refute the findings of an earlier study that has gained prominence (i.e., it is thought to be 
“counter-intuitive”). Instead of trying to accumulate a body of evidence in the form of a popu-
lation of effect sizes, researchers directly pit their results against those of other studies. This is 
most obvious whenever acrimonious disputes arise between research teams whose results lie 
on opposite sides of the P = 0.05 divide. Implicit in such a dispute is that one of the studies 
must be erroneous. These disputes are not confined to studies that have been closely replicated, 
and can arise even when studies are on different populations, species, or ecosystems (quasi 
replication sensu Palmer 2000).

Closer inspection of effect sizes often reveals that perceived conflicts among studies are il-
lusionary. There is no reason for ecological studies with identical protocols to produce identical 
estimates of effect sizes (for a review, see Kelly 2006). First, average effect sizes and sample 
sizes in ecology and evolutionary biology are sufficiently low that sampling error can generate 
considerable variation in estimated effects (Møller and Jennions 2002). Summarizing using 
threshold P-values creates problems because studies that fail to refute the null hypothesis are 
treated as contradicting those that do (see Kalcounis-Rüppell et al. 2005). The absurdity of 
this is shown in Figure 23.2. Here the significant correlations in studies B and C are treated 
as being in agreement with each other, but in conflict with the findings from study A, even 
though studies A and B yielded very similar estimates of the effect size (Stoehr 1999). Low 
statistical power makes it likely that attempts to replicate a study that reported a significant 
effect will produce a nonsignificant result (Jennions and Møller 2003). Study D illustrates this 
argument graphically. If this study is replicated at the same scale, the confidence intervals will 
be similarly wide. Even if the estimated mean effect in Study D is the true mean, almost half 
the new estimates will be nonsignificant because they will fall to the left of study D with 95% 
confidence intervals that then overlap zero. It is instructive to view a graph plotting the function 
that relates the likelihood that a null hypothesis is rejected in an exactly replicated study, to the 
P-value obtained in an initial study; see Greenwald et al. (1996), or Figure 1 in Kelly (2006).

Before researchers embark on accounts of why their results differ from those of another study, 
they should first test whether sampling error alone provides a parsimonious explanation. In 
our experience, broad 95% confidence intervals in ecology and evolutionary biology mean that 
nonsignificant and significant results rarely differ more than expected by chance (i.e., effect 
size estimates overlap). But if two studies do differ, what should we conclude? If they are truly 
identical studies then this can only be due to chance. If they are not, then any of the innumerable 
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size = 0) is indicated by a vertical line.
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factors that differ between them could account for the difference. We lack the data to decide 
which is the case because each study yields one effect size for a given hypothesis. This should 
be self-evident and seems trivial, but inspection of almost any recent journal will show that 
researchers still attempt to explain why two particular studies differ. Indeed, this is an almost 
compulsory component of the Discussion section of papers. Editors and reviewers will invari-
ably ask authors to speculate as to why their findings differ from those of previous studies.

It is almost impossible to perfectly replicate biological studies, particularly those conducted 
in the field. This is because populations have different histories of selection and dispersal (Ga-
rant et al. 2005); genetic and environmental effects during development mean that individuals 
vary in their responses to identical stimuli (e.g., David et al. 2000); and responses often vary 
with time of year, physiological state, weather conditions, and so on (e.g., Qvarnström et al. 
2000). Ecologists and evolutionists work with organisms, not atoms (clones or inbred lines in 
the laboratory are the closest analog we have). From this standpoint alone, researchers will 
achieve more for their field if they view their own work as contributing toward the ability to 
generalize, rather than seeing it as an attempt to validate or refute another result. Given modest 
statistical power, there is also limited ability even to reject a null hypothesis internal to their 
own study with high confidence, again suggesting that studies are best viewed as contributing 
to the wider picture.

How to Present Results

Researchers who embrace meta-analysis can find it difficult to write Discussion sections of pa-
pers. Traditionally these are a forum where one must inflate the conclusions that can be drawn 
from a study in order to ensure its publication. When studies are viewed as contributing single 
data points to larger data sets, there is no incentive to overinterpret individual results. This can 
be daunting, but researchers should remind themselves of what they already know: their results 
are probabilistic. The outcomes of individual studies vary due to sampling error, and as a result 
of the genuine variation in the strength of causal factors under different conditions. No single 
study, no matter how large, is guaranteed to produce a universally correct answer (Ioannidis et 
al.1998). Pragmatically, we suggest that authors use the discussion section to highlight the accu-
racy of their estimates (i.e., sample sizes and the attention given to reducing measurement error); 
the quality of their experimental design (i.e., how well they have controlled for confounding 
variables); and the extent to which the tested relationships have been studied by others.

One suggestion is for authors to include small-scale meta-analyses that estimate the mean 
effect size for studies that have asked the same question(s) that is/are the focus of their own 
study; see Young and Horton (2005) for a formal requirement to do so in some journals. A 
comprehensive meta-analysis is a major task (Chapters 3 to 5). So, to make the task manage-
able authors can narrow their coverage to include only studies of the same species, taxonomic 
group, or ecotype. Even if the resultant meta-analysis is imperfect and does not conform to the 
strict protocols of a systematic review (Chapters 3 to 5; Roberts et al. 2006), it will still be of 
greater value than the current practice of citing a few papers that did or did not report a signifi-
cant result in the same direction. Tables can be used, but if results are presented graphically (as 
in Fig. 23.2), the extent to which there are discrepancies between studies, and how power is-
sues affect the likelihood of reporting a significant result (Colegrave and Ruxton 2003) is more 
easily grasped. In practice, there is precedence for this approach as one occasionally encounters 
primary research papers where the authors have tabulated “vote counts” of other studies that 
have asked the same question (e.g., Reynolds and Jones 1999). It is a small step to shift from 
reporting P-values to effect size estimates. Given the need for researchers to have incentives 
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for this extra effort, it is worth noting that publications that include this type of value-added 
quantitative information are more likely to be cited. They are a ready source of information 
for those compiling larger data sets to produce a more rigorous meta-analysis, and are usually 
formally acknowledged by then being cited.

Meta-analysis and Decisions about Study Replication

Once meta-analysis is embraced, “researchers see their piece of research as a modest contribu-
tion to the much larger picture in a research field” (Nakagawa and Cuthill 2007). From this per-
spective the goal is to ensure that multiple studies are available for subsequent analysis. This 
raises a question: How should studies be replicated? This answer is important because it influ-
ences the activities of individual researchers and of funding bodies. For example, is it better to 
fund a researcher who has reported an intriguing finding in an earlier pilot study and wishes to 
replicate the study with a larger sample size, or should funding be directed toward others who 
can ask the same question in other study systems (quasi replication)? One view is that some 
subdisciplines, such as behavioral ecology, have been damaged by a failure to precisely repli-
cate studies that make exciting but controversial claims (for reviews, see Palmer 2000, Kelly 
2006). If high-profile studies are false, they have undue influence in the long term (making 
them harder to dispel) but they can be dismissed quickly if they are rigorously scrutinized and 
swiftly replicated. Here we will make the counterargument that quasi replication is actually a 
more profitable approach for ecologists and evolutionists. There is, however, a caveat. This is 
only true if it is combined with a shift toward using the results of meta-analyses to guide the 
interpretation of published studies.

The appropriate form of study replication depends on how general we want to make our 
conclusions. We use a hypothetical case study to make our point. Consider the skepticism 
sometimes felt when a study produces an unexpected but impressive result. For example, it 
might be shown that feral cats with more symmetric whiskers sire more sons than daughters 
(P = 0.02, n = 50, r = 0.33; 95% CI: 0.04 to 0.62). This could lead to a plethora of “copy cat” 
studies (forgive the pun). The question of appropriate replication depends entirely on whether 
we are concerned that this specific study has miscalculated the biology of feral cats, or whether 
we want to test whether the finding is indicative of a wider phenomenon. We might be equally 
skeptical in both cases because a single study is the source of a whole new hypothesis (i.e., that 
paternal whisker symmetry predicts offspring sex ratios).

In disciplines like physics, researchers tend to accept that everyday studies produce “cor-
rect” results. The exceptions usually arise in areas at the forefront of theory where the requisite 
instrumentation or software is often at the limits of our technology. (For example, there is cur-
rently much debate about a recent result, using the CERN particle accelerator, indicating that 
muon neutrinos travel faster than the speed of light. Most physicists appear to assume that the 
speed was incorrectly measured because, if this is not the case, the finding would require major 
reorganization of established and well-corroborated theory). Greater confidence in the reliabil-
ity of other researchers’ findings is partly attributable to lower stochasticity and a better under-
standing of the effects of confounding variables (e.g., temperature, density) so that estimates of 
effect sizes tend to be more precise and replicable. In fields like physics greater attention can 
be given to testing whether a theory or phenomenon can be generalized (e.g., determining what 
classes of materials display superconductivity). Disinclination to repeat an original study might 
also be attributable to researchers having less affinity with knowing about a specific chemical 
compound rather than, say, learning about the general properties of a class of materials. In 
contrast, many biologists really want to know the truth about cats (or dogs or orchids). They 
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define themselves by the organisms they study, rather than the theories they are testing. In such 
cases, our hypothetical cat study will trouble these types of researchers if they believe that the 
pattern is spurious. They will remeasure the whisker symmetry-sex ratio relationship in other 
cat populations but, as we have already noted, it is impossible to replicate ecological studies 
with perfect precision. Unless researchers can demonstrate fraud, a flawed statistical analysis, 
or mismeasurement, it will not be possible to “disprove” the original study. There are too many 
uncontrolled factors. Eventually, however, cat researchers might accumulate sufficient studies 
to conduct a meta-analysis. If the weighted mean correlation across cat studies is close to zero 
we can, without making any direct judgments about the validity of the original study, conclude 
that it was unrepresentative.

We have discussed this example at length to make the following point: Does anyone really 
care that much about cats? Maybe not, at least when they are acting as scientists rather than pet 
owners. Close replication of a study is probably motivated more by the knowledge that, given 
current practices, it could become influential and be presented as “correct” simply because 
P < 0.05 without being independently verified. It might even become a textbook exemplar. One 
response is therefore to subject this single study to intense scrutiny. If it proves to have grossly 
miscalculated the average effect then there is scientific progress. It is rather limited progress 
though. In our case, we only end up knowing a lot more about cats. And what if the original 
cat study was a good estimate of the mean effect? A more economical approach is to test for 
a general rule. We can, for example, productively ask whether whisker (or other aspects of 
body) symmetry predicts sex ratios in felids by conducting studies on lions, cheetahs, pumas, 
and so on. If a meta-analysis indicates a weighted mean effect close to zero, we have learned 
that symmetry tends not to predict offspring sex ratios in felids. With hindsight, we can either 
infer that cats are unrepresentative of felids (which could then be tested) or that the original 
study reported a false positive. If there is a significant mean effect, however, our confidence 
that symmetry predicts sex ratios has been expanded to cover the average feline. Of course, 
in so doing we accept that there is less robust evidence available to confirm whether we have 
a good estimate of the predictive value of whisker symmetry in any given species. Generality 
trades off with specificity. The extent to which ecologists and evolutionary biologists can ac-
cept this trade-off is a major source of conflict between those who embrace and reject the use 
of meta-analysis.

The use of meta-analysis should ameliorate the view that quasi replication is uninformative 
about the validity of an earlier study. The only caveat is that we must ensure that quasi replica-
tion does not increase selective reporting compared to that for true replication (Palmer 2000, 
470; e.g., truly replicated studies will be reported if they contradict the original study, while 
quasi-replicated studies that fail to detect an effect might go unpublished). There is currently 
a disinclination to reject the positive findings of an earlier study as inaccurate unless precise 
replication shows that they are anomalous (Kelly 2006). However, meta-analysis allows one to 
draw inferences about a specific study if one is prepared to generalize across disparate studies. 
For example, if a focal study reports a significant relationship, but meta-analysis of a wider 
range of studies shows that the mean effect is close to the null hypothesis, a meta-analyst would 
probably conclude (in the absence of additional information) that the results of the focal study 
were due to a type I error. In our case study, whisker symmetry in cats might have predictive 
powers that are not apparent in other felids, but if one takes a broader perspective the external 
evidence does not support this claim. Of course, if a specific study is an outlier with respect 
to the general distribution of effects, then it might be worthy of further investigation because 
it could have a genuine biological basis. Exactly the same population level approach can be 
taken to detect scientific misconduct if some authors consistently report larger effect sizes than 
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their coworkers, again with the caveat that some researchers might work on systems where 
measurement error is smaller, or tighter experimental designs are possible, or they might be 
more skilled at statistically controlling for confounding variables.

The points we have raised about study replication might seem trivial, but they are not. Em-
bracing a meta-analytic perspective requires a profound cultural shift in how research find-
ings are presented. If individual studies are given undue prominence then precise replication 
to challenge controversial findings will remain the favored response to controversial studies 
(Kelly 2006). Hopefully, however, greater use of meta-analysis will shift this mindset so that 
researchers are more interested in “the average study” rather than those at the extremes of the 
effect size distribution. Whether this will actually happen is still unclear. First, ecologists and 
evolutionary biologists are trained to observe and emphasize discontinuities in nature (e.g., to 
assign individuals to a species, or habitats to ecotypes). It requires a conceptual leap to switch 
to a worldview where, to pursue our case study one last time, one is comfortable speaking of 
symmetry predicting offspring sex ratio in felids, but can refrain from making a follow-up 
statement that this is true in feral cats but not in, say, lions if the single lion study had a value of 
r = 0.10 (95% CI: -0.19 to 0.39, P = 0.50, n = 50). The average felid is intangible, while lions 
and cats are real. Second, it would be amiss not to acknowledge that evolutionary biology (and 
perhaps ecology) is an unusual science because contingency and rare events matter. For exam-
ple, although many patterns and rules have been detected that allow us to predict the direction 
of adaptive evolution (e.g., a shift in life history strategies toward earlier sexual maturation in 
response to predation; Roff 2002), sometimes a fascinating adaptation only evolves once. For 
example, one species of burrowing owl (Athene cunicularia) collects and places dung in front 
of its burrow (Levey et al. 2007). Experiments show that this behavior significantly increases 
the rate at which the owl’s preferred prey of dung beetles are consumed. There is no way to 
generalize this result, because no other species use dung in this fashion, and the only replica-
tion possible is to validate the positive effect of dung placement on owl foraging success. In 
some respects, evolutionary biology is akin to economics where general laws can be formu-
lated but rare events (which are common enough as a class) often lead to unique outcomes 
making predictions difficult (for a popular account of the “dismal sciences,” see Taleb 2007).

The Advantages of “Effective Thinking”

Meta-analysis and the use of effect sizes can improve ecological and evolutionary studies by 
allowing researchers to focus on questions that they could not previously answer either in 
practice or in principle. Nakagawa and Cuthill (2007) have coined the apt phrase “effective 
thinking” for the resultant mindset. Here are some advantages of “effective thinking”: 

(1)	 Power and wasteful explanations: It is a truism that sample sizes in ecology and evo-
lutionary biology are small. For example, empirical studies that involve tracking the 
life histories of individuals to measure their reproductive success, growth rates, survival 
rates, or that attempt to estimate share of paternity using microsatellites, suffer severe 
logistic and funding constraints. Small sample sizes result in low statistical power and 
frequent failure to reject false null hypotheses. Although some ecological journals en-
courage the presentation of power analyses, this is still uncommon. Doing so voluntarily 
could punish researchers because, without a baseline reference for average power in a 
field (e.g., Jennions and Møller 2003), reviewers are more likely to reject papers when 
power appears low, say, < 30%. Authors are therefore under pressure to discuss nega-
tive results as though they are conclusive. This is wasteful and generates spurious argu-
ments. Presenting effect sizes and their confidence intervals (even though they convey 
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similar information) is a gentler way to remind readers about the extent to which they 
can draw inferences from specific tests (Colegrave and Ruxton 2003). In the long run, it 
also makes it easier to assess the repeatability of studies, by comparing the location and 
precision of effect size estimates (e.g., Fig. 23.2).

(2)	 Detecting trends: Given low statistical power, vote counting of significant studies is a 
very weak method to detect general biological trends. The use of effect sizes makes it far 
easier to detect patterns. In Figure 23.1, for example, if the criterion for significance was 
P < 0.01, only two of eight studies rejected the null hypothesis. Inspection of the graph 
shows, however, that all eight studies reported a positive relationship. This leads to a 
very different interpretation than that reached if one were to extract the eight P-values 
from the text of the paper (e.g., 0.001, ns, ns, ns, 0.001, ns, ns, ns). If the mean effect 
differs from the null value, deciding whether there is a causal relationship depends on the 
design of the original studies (see Chapter 24 for further discussion of how to interpret 
mean effect sizes).

(3)	 Future study design: Information about the average effect size can provide post hoc in-
sight into why many published studies did not obtain significant results (e.g., due to low 
power to detect an average sized effect). It also ensures that future studies testing for the 
focal relationship in a specific context are designed with adequate statistical power. In 
addition, it creates the necessary benchmark against which comparisons can be made 
(see no. 5, below). However, there is a caveat; if there is a tendency for earlier studies to 
report inflated estimates of effect sizes (Chapter 15), then using these studies to design 
future work will lead to an overestimation of statistical power that, in turn, will increase 
the proportion of significant findings that are false positives (Ioannidis 2005c).

(4)	 Identifying sources of variation: Different studies, even those as precisely replicated as 
a biological system allows, rarely produce identical results. Compiling a data set of ef-
fect sizes allows us to ask why. We can first test whether the heterogeneity in effect size 
estimates is greater than expected by chance due to sampling error. If it is, then we have 
genuine conflict among studies and a new world to explore that was hidden when we 
only focused on significance testing in the original studies. The next step is to undertake 
exploratory studies to identify potential correlates of effect sizes. How these are inter-
preted depends on whether studies were randomly assigned with respect to the variables 
of interest. If they were (and this is often a judgment call), then we can tentatively posit a 
causal relationship between these factors and the relationship (effect size) under study. For 
example, if the correlation between body size and fecundity is stronger in deep water than 
shallow water marine species, we might causally attribute this to a depth effect. However, 
we cannot discount the possibility that the available species were drawn nonrandomly 
from the two habitats (e.g., it was harder to obtain data from larger bodied animals in 
deeper water). Also, because we have not experimentally manipulated depth, we cannot 
exclude the possibility that a correlate of depth (e.g., light levels or temperature) is respon-
sible for the variation in effect sizes. Nonetheless, through judicial data exploration much 
progress can be made. For example, comparisons of effect sizes obtained from studies of 
colder and warmer waters at the same depth can corroborate or diminish an argument that 
temperature rather than depth affects the size-fecundity relationship. The use of such “nat-
ural experiments” is an unavoidable component of ecological and evolutionary research 
because some questions are simply not amenable to formal experimental manipulations.

The search for sources of variation in effect sizes is more likely to be important in 
ecology and evolution that in other areas of sciences. This is because there is greater 
variation in the range of study systems for which we want to draw general conclusions, 
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the methods used to collect data and test hypotheses are more variable, and our ability 
to control confounding variables (especially in field studies) is limited (Chapter 25). The 
use of meta-analysis models that include predictor factors or continuous covariates to 
explore variation in research findings is arguably one of the key advances that a shift to 
effect size thinking can deliver for ecology and evolutionary biology, and the synthesis 
of these two disciplines. 

(5)	 Ranking the importance of factors: Within a single study researchers often test how well 
a range of factors (or experimental manipulations) predict changes in a response variable. 
If results are only reported in terms of P-values, it is not easy to rank their relative impor-
tance. In contrast, presenting effect sizes and measures of their variability offers a simple 
way for readers to compare the influence of different factors or treatments (see Fig. 24.9 
in Chapter 24). The identical approach can be used to compile data from separate studies 
to identify which factors are strong or weak predictors, or to identify those factors where 
large confidence intervals for effect size estimates suggest that we need more data before 
we draw any conclusions. One could argue that when sample sizes are the same, P-values 
can be used to rank factors. This is true, but in ecology and evolutionary biology sample 
sizes are almost never identical, and may be consistently smaller for some variables 
because they are more costly or difficult to measure. For example, a sexual difference in 
body size is easier to measure than one in immune system effectiveness (one might also 
question whether it is reasonable to combine such different responses in a meta-analysis). 
A study of correlates of bib size in male sparrows by Nakagawa et al. (2007) is a nice 
case study illustrating how pooling effect sizes across studies can inform the direction of 
future research (see Fig. 24.8 in Chapter 24).

(6)	 Should I ask the same question? The use of cumulative meta-analysis allows us to test 
whether estimates of the mean effect size have stabilized (Chapter 15). If so, this implies 
that future studies of a similar nature are unlikely to meaningfully alter our conclusions. This 
encourages researchers to ask new questions, or to direct their attention to exploring finer-
scale variation in the strength of an effect under different circumstances (see no. 4, above).

(7)	 Effect sizes as new variables: Effect sizes are themselves data points that can be used as 
either predictor or response variables in statistical analyses. We have already described 
their use as response variables whenever attempts are made to predict sources of hetero-
geneity in effect size estimates. The comparative method has been enormously effective 
in studies looking at the evolution of adaptive traits (Felsenstein 1985) and, to a lesser 
extent, in asking higher-level questions in ecology, such as those about community com-
position (e.g., Losos 1996, Cardillo et al. 2008). Comparative tests have led to major 
advances in our understanding of how traits coevolve and what drives the evolution of 
specific life histories and body shapes. Now that phylogenetic comparative analyses are 
becoming available for effect sizes (Chapter 17; Adams 2008, Felsenstein 2008, Lajeu-
nesse 2009, Hadfield and Nakagawa 2010) we should see increased interest in studying 
patterns of coevolution between effect sizes and fixed traits or even between pairs of 
effect sizes. Researchers have asked why morphological traits like relative testes size 
are so much bigger for some species than others. (It is due to intense sperm competition 
in species where females mate with multiple males.) Equivalent questions can now be 
posed in the same way for more “dynamic” properties captured by effect sizes that once 
seemed less quantifiable, such as how boldness or shyness relate to fitness (Smith and 
Blumstein 2008), or the extent to which body size increases as temperature decreases 
(Adams and Church 2008). It is also worth remembering that, although still rarely done, 
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effect sizes can be used as predictor variables (Chapter 24). We can also ask questions 
about how effect sizes coevolve. For example, in species where mating with nonvirgin 
males has a more detrimental effect on female fecundity (Torres-Vila and Jennions 2005), 
are females more discriminating about mating with virgins? Effect sizes calculated using 
the proportion of females that choose virgins over nonvirgins in two-choice trials would 
allow this idea to be tested; that is, are the two effect sizes correlated?

(8)	 Improving meta-analyses: Reporting effect sizes in primary studies would greatly facili-
tate the extraction of effect sizes for meta-analyses. It would reduce the risk of transcrip-
tion and calculation errors when compiling a data set for a meta-analysis, and would 
result in greater replicability for the meta-analyses based on these data.

(9)	 Management and Policy: In applied areas of ecology and evolutionary biology, those 
unfamiliar with the details of scientific methodology are often required to develop man-
agement strategies and formulate policies based on scientific findings. Reporting effect 
sizes is likely to reduce the likelihood that the potential magnitude of a given practice 
will be incorrectly estimated due to over-reliance on P-values.

Conclusions

In our view, publication practices in ecology and evolutionary biology overemphasize the 
value of individual studies. The resultant focus on P-values has led some researchers to believe 
their task is to confirm or refute isolated null hypotheses. However, on closer inspection this is 
almost never their real long-term goal. Even those who only seem interested in understanding 
their small corner of the natural world tend to have greater aspirations. No working biologist 
ever presents results in isolation. Invariably other studies, often on different species, taxa, or 
ecosystems, are cited. Why? Either there is an expectation that there is a general rule, so that 
studies detecting the same pattern or experiments identifying the same causal factor are cited; 
or the researcher thinks that his/her study differs from previous ones in a way that will influ-
ence causation, so that failure to obtain the same result is worth highlighting. Given this prac-
tice, even those ecologists and evolutionary biologists who are primarily interested in working 
out the details of their own study system should be happy to accept some responsibility for 
presenting data in a form that makes it easier to conduct meta-analyses.

We believe that the intellectual goal of most ecologists and evolutionary biologists is to 
uncover general rules in nature, and to identify the exceptions that push research in new di-
rections. This goal is only achievable when we work on a scale that is larger than our own 
research projects. A science that seeks only to test an isolated hypothesis is merely a program 
to catalogue nature in a piecemeal fashion. Some empiricists have long accepted the reality that 
individual studies are small pieces of a big picture. In evolutionary biology, the advances in 
understanding that have come from the use of the phylogenetic comparative method perfectly 
illustrate this process. Biologists have learned to accept that grueling fieldwork is often boiled 
down to a single data point for a species in a phylogenetic regression. We should be equally 
comfortable with the fact that the real value of the statistical tests that we calculate is often not 
to confirm the occurrence of a phenomenon in our own study system (although this might be 
of great interest to ourselves and a few others), but rather to generate an effect size that can be 
pooled to explore trends at higher levels of analysis.

Finally, we should acknowledge that many of the points we have made in this chapter ad-
dress issues that are beyond the immediate control of many meta-analysis practitioners. They 
lie in the domain of editors, funding agencies, and so on. Even so, today’s young biologist 
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is tomorrow’s chief editor or funding agency executive. This chapter is ultimately a work of 
advocacy that can hopefully be invoked by, for example, those querying editorial decisions or 
challenging the “conventional wisdom” of reviewers whose opinions are not always substanti-
ated by valid quantitative analysis of the literature. It is worthwhile questioning current publi-
cation practices, because change does not occur without dissent and debate.


