74 research outputs found
Stabilizing optical microcavities in 3D
Optical (micro-)cavities are the workhorse for studying light-matter interactions with important applications in lasing, sensing, and quantum simulations, to name a few. Open resonators in particular offer great versatility due to their tunability but pose challenges in terms of control. This concerns, on the one hand, the control of their length, and on the other hand, the relative orientation (tilt) of the mirror planes to each other. The latter becomes particularly important when working with optically unstable resonators, such as plane-parallel resonators.There are numerous strategies to enhance stability using passive techniques, such as material selection, mechanical damping, or thermal compensation. But especially for tuneable microcavities often an active stabilization method with feedback control systems must be employed. Here, we present a novel method for tilt measurement and stabilization using inverse solving of the Schrödinger equation arising in the paraxial description of the cavity modes. Our method enables the highly precise determination of absolute tilt angles, making it suitable for microcavity applications that require the highest level of cavity parallelism
Quantum Rotor Engines
This chapter presents autonomous quantum engines that generate work in the
form of directed motion for a rotor. We first formulate a prototypical
clock-driven model in a time-dependent framework and demonstrate how it can be
translated into an autonomous engine with the introduction of a planar rotor
degree of freedom. The rotor plays both the roles of internal engine clock and
of work repository. Using the example of a single-qubit piston engine, the
thermodynamic performance is then reviewed. We evaluate the extractable work in
terms of ergotropy, the kinetic energy associated to net directed rotation, as
well as the intrinsic work based on the exerted torque under autonomous
operation; and we compare them with the actual energy output to an external
dissipative load. The chapter closes with a quantum-classical comparison of the
engine's dynamics. For the single-qubit piston example, we propose two
alternative representations of the qubit in an entirely classical framework:
(i) a coin flip model and (ii) a classical magnet moment, showing subtle
differences between the quantum and classical descriptions.Comment: Chapter of the upcoming book "Thermodynamics in the Quantum Regime -
Recent Progress and Outlook
Polariton Condensation and Lasing
The similarities and differences between polariton condensation in
microcavities and standard lasing in a semiconductor cavity structure are
reviewed. The recent experiments on "photon condensation" are also reviewed.Comment: 23 pages, 6 figures; Based on the book chapter in Exciton Polaritons
in Microcavities, (Springer Series in Solid State Sciences vol. 172), V.
Timofeev and D. Sanvitto, eds., (Springer, 2012
Bose-Einstein condensation of photons in an optical microcavity
Bose-Einstein condensation, the macroscopic ground state accumulation of
particles with integer spin (bosons) at low temperature and high density, has
been observed in several physical systems, including cold atomic gases and
solid state physics quasiparticles. However, the most omnipresent Bose gas,
blackbody radiation (radiation in thermal equilibrium with the cavity walls)
does not show this phase transition, because the chemical potential of photons
vanishes and, when the temperature is reduced, photons disappear in the cavity
walls. Theoretical works have considered photon number conserving
thermalization processes, a prerequisite for Bose-Einstein condensation, using
Compton scattering with a gas of thermal electrons, or using photon-photon
scattering in a nonlinear resonator configuration. In a recent experiment, we
have observed number conserving thermalization of a two-dimensional photon gas
in a dye-filled optical microcavity, acting as a 'white-wall' box for photons.
Here we report on the observation of a Bose-Einstein condensation of photons in
a dye-filled optical microcavity. The cavity mirrors provide both a confining
potential and a non-vanishing effective photon mass, making the system formally
equivalent to a two-dimensional gas of trapped, massive bosons. By multiple
scattering off the dye molecules, the photons thermalize to the temperature of
the dye solution (room temperature). Upon increasing the photon density we
observe the following signatures for a BEC of photons: Bose-Einstein
distributed photon energies with a massively populated ground state mode on top
of a broad thermal wing, the phase transition occurring both at the expected
value and exhibiting the predicted cavity geometry dependence, and the ground
state mode emerging even for a spatially displaced pump spot
Does Bose-Einstein condensation of CMB photons cancel {\mu} distortions created by dissipation of sound waves in the early Universe?
The difference in the adiabatic indices of photons and non-relativistic
baryonic matter in the early Universe causes the electron temperature to be
slightly lower than the radiation temperature. Thermalization of photons with a
colder plasma results in the accumulation of photons in the Rayleigh-Jeans
tail, aided by stimulated recoil, while the higher frequency spectrum tries to
approach Planck spectrum at the electron temperature
T_{\gamma}^{final}=\Te; i.e., Bose-Einstein condensation
of photons occurs. We find new solutions of the Kompaneets equation describing
this effect. No actual condensate is, in reality, possible since the process is
very slow and photons drifting to low frequencies are efficiently absorbed by
bremsstrahlung and double Compton processes. The spectral distortions created
by Bose-Einstein condensation of photons are within an order of magnitude (for
the present range of allowed cosmological parameters), with exactly the same
spectrum but opposite in sign, of those created by diffusion damping of the
acoustic waves on small scales corresponding to comoving wavenumbers . The initial perturbations on these scales are completely
unobservable today due to their being erased completely by Silk damping. There
is partial cancellation of these two distortions, leading to suppression of
distortions expected in the standard model of cosmology. The net
distortion depends on the scalar power index and its running , and may vanish for special values of parameters, for example, for a running
spectrum with, . We arrive at an intriguing
conclusion: even a null result, non-detection of -type distortion at a
sensitivity of , gives a quantitative measure of the primordial
small-scale power spectrum.Comment: Published versio
Photon condensation in circuit QED by engineered dissipation
We study photon condensation phenomena in a driven and dissipative array of
superconducting microwave resonators. Specifically, we show that by using an
appropriately designed coupling of microwave photons to superconducting qubits,
an effective dissipative mechanism can be engineered, which scatters photons
towards low-momentum states while conserving their number. This mimics a
tunable coupling of bosons to a low temperature bath, and leads to the
formation of a stationary photon condensate in the presence of losses and under
continuous-driving conditions. Here we propose a realistic experimental setup
to observe this effect in two or multiple coupled cavities, and study the
characteristics of such an out-of-equilibrium condensate, which arise from the
competition between pumping and dissipation processes
Advances in small lasers
M.T.H was supported by an Australian Research council Future Fellowship research grant for this work. M.C.G. is grateful to the Scottish Funding Council (via SUPA) for financial support.Small lasers have dimensions or modes sizes close to or smaller than the wavelength of emitted light. In recent years there has been significant progress towards reducing the size and improving the characteristics of these devices. This work has been led primarily by the innovative use of new materials and cavity designs. This Review summarizes some of the latest developments, particularly in metallic and plasmonic lasers, improvements in small dielectric lasers, and the emerging area of small bio-compatible or bio-derived lasers. We examine the different approaches employed to reduce size and how they result in significant differences in the final device, particularly between metal- and dielectric-cavity lasers. We also present potential applications for the various forms of small lasers, and indicate where further developments are required.PostprintPeer reviewe
Thermalisation of a two-dimensional photonic gas in a 'white-wall' photon box
Bose-Einstein condensation, the macroscopic accumulation of bosonic particles
in the energetic ground state below a critical temperature, has been
demonstrated in several physical systems. The perhaps best known example of a
bosonic gas, blackbody radiation, however exhibits no Bose-Einstein
condensation at low temperatures. Instead of collectively occupying the lowest
energy mode, the photons disappear in the cavity walls when the temperature is
lowered - corresponding to a vanishing chemical potential. Here we report on
evidence for a thermalised two-dimensional photon gas with freely adjustable
chemical potential. Our experiment is based on a dye filled optical
microresonator, acting as a 'white-wall' box for photons. Thermalisation is
achieved in a photon number-conserving way by photon scattering off the
dye-molecules, and the cavity mirrors both provide an effective photon mass and
a confining potential - key prerequisites for the Bose-Einstein condensation of
photons. As a striking example for the unusual system properties, we
demonstrate a yet unobserved light concentration effect into the centre of the
confining potential, an effect with prospects for increasing the efficiency of
diffuse solar light collection.Comment: 15 pages, 3 figure
- âŠ