130 research outputs found

    Sustained delivery of bioactive TGF-β1 from self-assembling peptide hydrogels induces chondrogenesis of encapsulated bone marrow stromal cells

    Get PDF
    Tissue engineering strategies for cartilage defect repair require technology for local targeted delivery of chondrogenic and anti-inflammatory factors. The objective of this study was to determine the release kinetics of transforming growth factor β1 (TGF-β1) from self-assembling peptide hydrogels, a candidate scaffold for cell transplant therapies, and stimulate chondrogenesis of encapsulated young equine bone marrow stromal cells (BMSCs). Although both peptide and agarose hydrogels retained TGF-β1, fivefold higher retention was found in peptide. Excess unlabeled TGF-β1 minimally displaced retained radiolabeled TGF-β1, demonstrating biologically relevant loading capacity for peptide hydrogels. The initial release from acellular peptide hydrogels was nearly threefold lower than agarose hydrogels, at 18% of loaded TGF-β1 through 3 days as compared to 48% for agarose. At day 21, cumulative release of TGF-β1 was 32–44% from acellular peptide hydrogels, but was 62% from peptide hydrogels with encapsulated BMSCs, likely due to cell-mediated TGF-β1 degradation and release of small labeled species. TGF-β1 loaded peptide hydrogels stimulated chondrogenesis of young equine BMSCs, a relevant preclinical model for treating injuries in young human cohorts. Self-assembling peptide hydrogels can be used to deliver chondrogenic factors to encapsulated cells making them a promising technology for in vivo, cell-based regenerative medicine.National Institutes of Health (U.S.) (NIH EB003805)National Institutes of Health (U.S.) (NIH AR60331)National Institutes of Health (U.S.). Molecular, Cell, and Tissue Biomechanics (Training Grant Fellowship)Arthritis Foundation (postdoctoral fellowship

    Effect of self-assembling peptide, chondrogenic factors, and bone marrow-derived stromal cells on osteochondral repair

    Get PDF
    Objective The goal of this study was to test the ability of an injectable self-assembling peptide (KLD) hydrogel with or without chondrogenic factors (CF) and allogeneic bone marrow stromal cells (BMSCs) to stimulate cartilage regeneration in a full-thickness, critically-sized, rabbit cartilage defect model in vivo. We used CF treatments to test the hypotheses that CF would stimulate chondrogenesis and matrix production by cells migrating into acellular KLD (KLD + CF) or by BMSCs delivered in KLD (KLD + CF + BMSCs). Design Three groups were tested against contralateral untreated controls: KLD, KLD + CF, and KLD + CF +BMSCs, n = 6–7. Transforming growth factor-β1 (TGF-β1), dexamethasone, and insulin-like growth factor-1 (IGF-1) were used as CF pre-mixed with KLD and BMSCs before injection. Evaluations included gross, histological, immunohistochemical and radiographic analyses. Results KLD without CF or BMSCs showed the greatest repair after 12 weeks with significantly higher Safranin-O, collagen II immunostaining, and cumulative histology scores than untreated contralateral controls. KLD + CF resulted in significantly higher aggrecan immunostaining than untreated contralateral controls. Including allogeneic BMSCs + CF markedly reduced the quality of repair and increased osteophyte formation compared to KLD-alone. Conclusions These data show that KLD can fill full-thickness osteochondral defects in situ and improve cartilage repair as shown by Safranin-O, collagen II immunostaining, and cumulative histology. In this small animal model, the full-thickness critically-sized defect provided access to the marrow, similar in concept to abrasion arthroplasty or spongialization in large animal models, and suggests that combining KLD with these techniques may improve current practice.National Institutes of Health (U.S.) (National Institute for Biomedical Imaging and Bioengineering (U.S.) Grant EB003805)American Society for Engineering Education. National Defense Science and Engineering Graduate FellowshipNational Science Foundation (U.S.). Graduate Research FellowshipNational Institutes of Health (U.S.) (Grant EB003805)National Institutes of Health (U.S.) (Grant AR33236)Arthritis Foundation (Postdoctoral Fellowship

    Preconditioning of mesenchymal stromal cells with low-intensity ultrasound: influence on chondrogenesis and directed SOX9 signaling pathways

    Get PDF
    Background: Continuous low-intensity ultrasound (cLIUS) facilitates the chondrogenic differentiation of human mesenchymal stromal cells (MSCs) in the absence of exogenously added transforming growth factor-beta (TGFβ) by upregulating the expression of transcription factor SOX9, a master regulator of chondrogenesis. The present study evaluated the molecular events associated with the signaling pathways impacting SOX9 gene and protein expression under cLIUS. Methods: Human bone marrow-derived MSCs were exposed to cLIUS stimulation at 14 kPa (5 MHz, 2.5 Vpp) for 5 min. The gene and protein expression of SOX9 was evaluated. The specificity of SOX9 upregulation under cLIUS was determined by treating the MSCs with small molecule inhibitors of select signaling molecules, followed by cLIUS treatment. Signaling events regulating SOX9 expression under cLIUS were analyzed by gene expression, immunofluorescence staining, and western blotting. Results: cLIUS upregulated the gene expression of SOX9 and enhanced the nuclear localization of SOX9 protein when compared to non-cLIUS-stimulated control. cLIUS was noted to enhance the phosphorylation of the signaling molecule ERK1/2. Inhibition of MEK/ERK1/2 by PD98059 resulted in the effective abrogation of cLIUS-induced SOX9 expression, indicating that cLIUS-induced SOX9 upregulation was dependent on the phosphorylation of ERK1/2. Inhibition of integrin and TRPV4, the upstream cell-surface effectors of ERK1/2, did not inhibit the phosphorylation of ERK1/2 and therefore did not abrogate cLIUS-induced SOX9 expression, thereby suggesting the involvement of other mechanoreceptors. Consequently, the effect of cLIUS on the actin cytoskeleton, a mechanosensitive receptor regulating SOX9, was evaluated. Diffused and disrupted actin fibers observed in MSCs under cLIUS closely resembled actin disruption by treatment with cytoskeletal drug Y27632, which is known to increase the gene expression of SOX9. The upregulation of SOX9 under cLIUS was, therefore, related to cLIUS-induced actin reorganization. SOX9 upregulation induced by actin reorganization was also found to be dependent on the phosphorylation of ERK1/2. Conclusions: Collectively, preconditioning of MSCs by cLIUS resulted in the nuclear localization of SOX9, phosphorylation of ERK1/2 and disruption of actin filaments, and the expression of SOX9 was dependent on the phosphorylation of ERK1/2 under cLIUS

    Adult bone marrow stromal cell-based tissue-engineered aggrecan exhibits ultrastructure and nanomechanical properties superior to native cartilage

    Get PDF
    Objective: To quantify the structural characteristics and nanomechanical properties of aggrecan produced by adult bone marrow stromal cells (BMSCs) in peptide hydrogel scaffolds and compare to aggrecan from adult articular cartilage. Design: Adult equine BMSCs were encapsulated in 3D-peptide hydrogels and cultured for 21 days with TGF-β1 to induce chondrogenic differentiation. BMSC-aggrecan was extracted and compared with aggrecan from age-matched adult equine articular cartilage. Single molecules of aggrecan were visualized by atomic force microcopy-based imaging and aggrecan nanomechanical stiffness was quantified by high resolution force microscopy. Population-averaged measures of aggrecan hydrodynamic size, core protein structures and CS sulfation compositions were determined by size-exclusion chromatography, Western analysis, and fluorescence-assisted carbohydrate electrophoresis (FACE). Results: BMSC-aggrecan was primarily full-length while cartilage-aggrecan had many fragments. Single molecule measurements showed that core protein and GAG chains of BMSC-aggrecan were markedly longer than those of cartilage-aggrecan. Comparing full-length aggrecan of both species, BMSC-aggrecan had longer GAG chains, while the core protein trace lengths were similar. FACE analysis detected a ∼1:1 ratio of chondroitin-4-sulfate to chondroitin-6-sulfate in BMSC-GAG, a phenotype consistent with aggrecan from skeletally-immature cartilage. The nanomechanical stiffness of BMSC-aggrecan was demonstrably greater than that of cartilage-aggrecan at the same total sGAG (fixed charge) density. Conclusions: The higher proportion of full-length monomers, longer GAG chains and greater stiffness of the BMSC-aggrecan makes it biomechanically superior to adult cartilage-aggrecan. Aggrecan stiffness was not solely dependent on fixed charge density, but also on GAG molecular ultrastructure. These results support the use of adult BMSCs for cell-based cartilage repair.National Institutes of Health (U.S.) (NIH grant EB003805)National Institutes of Health (U.S.) (Grant AR33236)National Science Foundation (U.S.) (NSF grant NIRT-0403903)National Science Foundation (U.S.) (CMMI-0758651)National Institutes of Health (U.S.) (NIH Molecular, Cell, and Tissue Biomechanics Training Grant)Massachusetts Institute of Technology (Whitaker Health Science Fund Fellowship

    Biological Designer Self-Assembling Peptide Nanofiber Scaffolds Significantly Enhance Osteoblast Proliferation, Differentiation and 3-D Migration

    Get PDF
    A class of self-assembling peptide nanofiber scaffolds has been shown to be an excellent biological material for 3-dimension cell culture and stimulating cell migration into the scaffold, as well as for repairing tissue defects in animals. We report here the development of several peptide nanofiber scaffolds designed specifically for osteoblasts. We designed one of the pure self-assembling peptide scaffolds RADA16-I through direct coupling to short biologically active motifs. The motifs included osteogenic growth peptide ALK (ALKRQGRTLYGF) bone-cell secreted-signal peptide, osteopontin cell adhesion motif DGR (DGRGDSVAYG) and 2-unit RGD binding sequence PGR (PRGDSGYRGDS). We made the new peptide scaffolds by mixing the pure RAD16 and designer-peptide solutions, and we examined the molecular integration of the mixed nanofiber scaffolds using AFM. Compared to pure RAD16 scaffold, we found that these designer peptide scaffolds significantly promoted mouse pre-osteoblast MC3T3-E1 cell proliferation. Moreover, alkaline phosphatase (ALP) activity and osteocalcin secretion, which are early and late markers for osteoblastic differentiation, were also significantly increased. We demonstrated that the designer, self-assembling peptide scaffolds promoted the proliferation and osteogenic differentiation of MC3T3-E1. Under the identical culture medium condition, confocal images unequivocally demonstrated that the designer PRG peptide scaffold stimulated cell migration into the 3-D scaffold. Our results suggest that these designer peptide scaffolds may be very useful for promoting bone tissue regeneration

    Sequence Effect of Self-Assembling Peptides on the Complexation and In Vitro Delivery of the Hydrophobic Anticancer Drug Ellipticine

    Get PDF
    A special class of self-assembling peptides has been found to be capable of stabilizing the hydrophobic anticancer agent ellipticine in aqueous solution. Here we study the effect of peptide sequence on the complex formation and its anticancer activity in vitro. Three peptides, EAK16-II, EAK16-IV and EFK16-II, were selected to have either a different charge distribution (EAK16-II vs. EAK16-IV) or a varying hydrophobicity (EAK16-II vs. EFK16-II). Results on their complexation with ellipticine revealed that EAK16-II and EAK16-IV were able to stabilize protonated ellipticine or ellipticine microcrystals depending on the peptide concentration; EFK16-II could stabilize neutral ellipticine molecules and ellipticine microcrystals. These different molecular states of ellipticine were expected to affect ellipticine delivery. The anticancer activity of these complexes was tested against two cancer cell lines: A549 and MCF-7, and related to the cell viability. The viability results showed that the complexes with protonated ellipticine were effective in eradicating both cancer cells (viability <0.05), but their dilutions in water were not stable, leading to a fast decrease in their toxicity. In contrast, the complexes formulated with EFK16-II were relatively stable upon dilution, but their original toxicity was relatively low compared to that with protonated ellipticine. Overall, the charge distribution of the peptides seemed not to affect the complex formation and its therapeutic efficacy in vitro; however, the increase in hydrophobicity of the peptides significantly altered the state of stabilized ellipticine and increased the stability of the complexes. This work provides essential information for peptide sequence design in the development of self-assembling peptide-based delivery of hydrophobic anticancer drugs

    Modification of Hydrophilic and Hydrophobic Surfaces Using an Ionic-Complementary Peptide

    Get PDF
    Ionic-complementary peptides are novel nano-biomaterials with a variety of biomedical applications including potential biosurface engineering. This study presents evidence that a model ionic-complementary peptide EAK16-II is capable of assembling/coating on hydrophilic mica as well as hydrophobic highly ordered pyrolytic graphite (HOPG) surfaces with different nano-patterns. EAK16-II forms randomly oriented nanofibers or nanofiber networks on mica, while ordered nanofibers parallel or oriented 60° or 120° to each other on HOPG, reflecting the crystallographic symmetry of graphite (0001). The density of coated nanofibers on both surfaces can be controlled by adjusting the peptide concentration and the contact time of the peptide solution with the surface. The coated EAK16-II nanofibers alter the wettability of the two surfaces differently: the water contact angle of bare mica surface is measured to be <10°, while it increases to 20.3±2.9° upon 2 h modification of the surface using a 29 µM EAK16-II solution. In contrast, the water contact angle decreases significantly from 71.2±11.1° to 39.4±4.3° after the HOPG surface is coated with a 29 µM peptide solution for 2 h. The stability of the EAK16-II nanofibers on both surfaces is further evaluated by immersing the surface into acidic and basic solutions and analyzing the changes in the nanofiber surface coverage. The EAK16-II nanofibers on mica remain stable in acidic solution but not in alkaline solution, while they are stable on the HOPG surface regardless of the solution pH. This work demonstrates the possibility of using self-assembling peptides for surface modification applications

    RNA extraction from self-assembling peptide hydrogels to allow qPCR analysis of encapsulated cells

    Get PDF
    Self-assembling peptide hydrogels offer a novel 3-dimensional platform for many applications in cell culture and tissue engineering but are not compatible with current methods of RNA isolation; owing to interactions between RNA and the biomaterial. This study investigates the use of two techniques based on two different basic extraction principles: solution-based extraction and direct solid-state binding of RNA respectively, to extract RNA from cells encapsulated in four β-sheet forming self-assembling peptide hydrogels with varying net positive charge. RNA-peptide fibril interactions, rather than RNA-peptide molecular complexing, were found to interfere with the extraction process resulting in low yields. A column-based approach relying on RNA-specific binding was shown to be more suited to extracting RNA with higher purity from these peptide hydrogels owing to its reliance on strong specific RNA binding interactions which compete directly with RNA-peptide fibril interactions. In order to reduce the amount of fibrils present and improve RNA yields a broad spectrum enzyme solution—pronase—was used to partially digest the hydrogels before RNA extraction. This pre-treatment was shown to significantly increase the yield of RNA extracted, allowing downstream RT-qPCR to be performed
    • …
    corecore