141 research outputs found

    Hydrogen Balmer line formation in solar flares affected by return currents

    Full text link
    Aims. We investigate the effect of the electric return currents in solar flares on the profiles of hydrogen Balmer lines. We consider the monoenergetic approximation for the primary beam and runaway model of the neutralizing return current. Methods. Propagation of the 10 keV electron beam from a coronal reconnection site is considered for the semiempirical chromosphere model F1. We estimate the local number density of return current using two approximations for beam energy fluxes between 4×10114\times 10^{11} and 1×1012ergcm2s11\times 10^{12} {\rm erg cm^{-2} s^{-1}}. Inelastic collisions of beam and return-current electrons with hydrogen are included according to their energy distributions, and the hydrogen Balmer line intensities are computed using an NLTE radiative transfer approach. Results. In comparison to traditional NLTE models of solar flares that neglect the return-current effects, we found a significant increase emission in the Balmer line cores due to nonthermal excitation by return current. Contrary to the model without return current, the line shapes are sensitive to a beam flux. It is the result of variation in the return-current energy that is close to the hydrogen excitation thresholds and the density of return-current electrons.Comment: 4 pages, 3 figures, 1 table, accepted for publication in Astronomy and Astrophysics Letter

    Modifications of thick-target model: re-acceleration of electron beams by static and stochastic electric fields

    Full text link
    We study two modifications of the collisional thick-target model (CTTM) based on the global and local re-acceleration of non-thermal electrons by static and stochastic electric fields during their transport from the coronal acceleration site to the thick-target region in the chromosphere. We concentrate on a comparison of the non-thermal electron distribution functions, chromospheric energy deposits, and HXR spectra obtained for both considered modifications with the CTTM itself. The results were obtained using a relativistic test-particle approach. We simulated the transport of non-thermal electrons with a power-law spectrum including the influence of scattering, energy losses, magnetic mirroring, and also the effects of the electric fields corresponding to both modifications of the CTTM. We show that both modifications of the CTTM change the outcome of the chromospheric bombardment in several aspects. The modifications lead to an increase in chromospheric energy deposit, change of its spatial distribution, and a substantial increase in the corresponding HXR spectrum intensity.Comment: 15 pages, 14 figures, 3 tables, to be published in Astronomy and Astrophysic

    Sunspot waves and flare energy release

    Full text link
    We address a possibility of the flare process initiation and further maintenance of its energy release due to a transformation of sunspot longitudinal waves into transverse magnetic loop oscillations with initiation of reconnection. This leads to heating maintaining after the energy release peak and formation of a flat stage on the X-ray profile. We applied the time-distance plots and pixel wavelet filtration (PWF) methods to obtain spatio-temporal distribution of wave power variations in SDO/AIA data. To find magnetic waveguides, we used magnetic field extrapolation of SDO/HMI magnetograms. The propagation velocity of wave fronts was measured from their spatial locations at specific times. In correlation curves of the 17 GHz (NoRH) radio emission we found a monotonous energy amplification of 3-min waves in the sunspot umbra before the 2012 June 7 flare. This dynamics agrees with an increase in the wave-train length in coronal loops (SDO/AIA, 171 {\AA}) reaching the maximum 30 minutes prior to the flare onset. A peculiarity of this flare time profile in soft X-rays (RHESSI, 3-25 keV) is maintaining the constant level of the flare emission for 10 minutes after the short impulse phase, which indicates at the energy release continuation. Throughout this time, we found 30-sec period transverse oscillations of the flare loop in the radio-frequency range (NoRH, 17 GHz). This periodicity is apparently related to the transformation of propagating longitudinal 3-min waves from the sunspot into the loop transverse oscillations. The magnetic field extrapolation showed the existence of the magnetic waveguide (loop) connecting the sunspot with the energy release region. A flare loop heating can be caused by the interaction (reconnections) of this transversally oscillating waveguide with the underlying twisted loops.Comment: 7 pages, 9 figure

    A Systematic Examination of Particle Motion in a Collapsing Magnetic Trap Model for Solar Flares

    Full text link
    Context. It has been suggested that collapsing magnetic traps may contribute to accelerating particles to high energies during solar flares. Aims. We present a detailed investigation of the energization processes of particles in collapsing magnetic traps, using a specific model. We also compare for the first time the energization processes in a symmetric and an asymmetric trap model. Methods. Particle orbits are calculated using guiding centre theory. We systematically investigate the dependence of the energization process on initial position, initial energy and initial pitch angle. Results. We find that in our symmetric trap model particles can gain up to about 50 times their initial energy, but that for most initial conditions the energy gain is more moderate. Particles with an initial position in the weak field region of the collapsing trap and with pitch angles around 90 degrees achieve the highest energy gain, with betatron acceleration of the perpendicular energy the dominant energization mechanism. For particles with smaller initial pitch angle, but still outside the loss cone, we find the possibility of a significant increase in parallel energy. This increase in parallel energy can be attributed to the curvature term in the parallel equation of motion and the associated energy gain happens in the center of the trap where the field line curvature has its maximum. We find qualitatively similar results for the asymmetric trap model, but with smaller energy gains and a larger number of particles escaping from the trap.Comment: 11 pages, 13 figures. To be published in Astronomy and Astrophysic

    Fast magnetoacoustic wave trains in magnetic funnels of the solar corona

    Get PDF
    Context: Fast magneto-acoustic waves are highly dispersive in waveguides, so they can generate quasi-periodic wave trains if a localised, impulsive driver is applied. Such wave trains have been observed in the solar corona and may be of use as a seismological tool since they depend upon the plasma structuring perpendicular to the direction of propagation. Aims. We extend existing models of magnetoacoustic waveguides to consider the effects of an expanding magnetic field. The funnel geometry employed includes a field-aligned density structure. Methods: We performed 2D numerical simulations of impulsively generated fast magneto-acoustic perturbations. The effects of the density contrast ratio, density stratification, and spectral profile of the driver upon the excited wave trains were investigated. Results: The density structure acts as a dispersive waveguide for fast magneto-acoustic waves and generates a quasi-periodic wave train similar to previous models. The funnel geometry leads to generating additional wave trains that propagate outside the density structure. These newly discovered wave trains are formed by the leakage of transverse perturbations, but they propagate upwards owing to the refraction caused by the magnetic funnel. Conclusions: The results of our funnel model may be applicable to wave trains observed propagating in the solar corona. They demonstrate similar properties to those found in our simulations

    Response of optical hydrogen lines to beam heating: I. Electron beams

    Full text link
    We investigate the role of non-thermal electrons in the formation regions of Halpha, Hbeta, and Hgamma lines in order to unfold their influence on the formation of these lines. We concentrate on pulse-beam heating varying on a subsecond timescale. Furthermore, we theoretically explore possibility that a new diagnostic tool exists indicating the presence of non-thermal electrons in the flaring chromosphere based on observations of optical hydrogen lines. To model the evolution of the flaring atmosphere and the time-dependent hydrogen excitation and ionisation, we used a 1-D radiative hydrodynamic code combined with a test-particle code that simulates the propagation, scattering, and thermalisation of a power-law electron beam in order to obtain the flare heating and the non-thermal collisional rates due to the interaction of the beam with the hydrogen atoms. All calculated models have shown a time-correlated response of the modelled Balmer line intensities on a subsecond timescale, with a subsecond timelag behind the beam flux. Depending on the beam parameters, both line centres and wings can show pronounced intensity variations. The non-thermal collisional rates generally result in an increased emission from a secondary region formed in the chromosphere.Comment: 13 pages, 11 figures, accepted to Astronomy and Astrophysic

    Kappa distribution and hard X-ray emission of solar flares

    Full text link
    We investigate whether the so-called kappa distribution, often used to fit electron distributions detected in-situ in the solar wind, can describe electrons producing the hard X-ray emission in solar flares. Using Ramaty High Energy Solar Spectroscopic imager (RHESSI) flare data we fit spatially- and feature-integrated spectra, assuming kappa distribution for the mean electron flux spectrum. We show that a single kappa distribution generally cannot describe spatially integrated X-ray emission composed of both footpoint and coronal sources. In contrast, the kappa distribution is consistent with mean electron spectra producing hard X-ray emission in some coronal sources.Comment: 4 pages, 4 figures, changed content, accepted to A&

    Slipping magnetic reconnection during an X-Class solar flare observed by SDO/AIA

    Get PDF
    We present SDO/AIA observations of an eruptive X-class flare of July 12, 2012, and compare its evolution with the predictions of a 3D numerical simulation. We focus on the dynamics of flare loops that are seen to undergo slipping reconnection during the flare. In the AIA 131A observations, lower parts of 10 MK flare loops exhibit an apparent motion with velocities of several tens of km/s along the developing flare ribbons. In the early stages of the flare, flare ribbons consist of compact, localized bright transition-region emission from the footpoints of the flare loops. A DEM analysis shows that the flare loops have temperatures up to the formation of Fe XXIV. A series of very long, S-shaped loops erupt, leading to a CME observed by STEREO. The observed dynamics are compared with the evolution of magnetic structures in the "standard solar flare model in 3D". This model matches the observations well, reproducing both the apparently slipping flare loops, S-shaped erupting loops, and the evolution of flare ribbons. All of these processes are explained via 3D reconnection mechanisms resulting from the expansion of a torus-unstable flux rope. The AIA observations and the numerical model are complemented by radio observations showing a noise storm in the metric range. Dm-drifting pulsation structures occurring during the eruption indicate plasmoid ejection and enhancement of reconnection rate. The bursty nature of radio emission shows that the slipping reconnection is still intermittent, although it is observed to persist for more than an hour
    corecore