90 research outputs found
Transfer of metabolites across the peroxisomal membrane
AbstractPeroxisomes perform a large variety of metabolic functions that require a constant flow of metabolites across the membranes of these organelles. Over the last few years it has become clear that the transport machinery of the peroxisomal membrane is a unique biological entity since it includes nonselective channels conducting small solutes side by side with transporters for ‘bulky’ solutes such as ATP. Electrophysiological experiments revealed several channel-forming activities in preparations of plant, mammalian, and yeast peroxisomes and in glycosomes of Trypanosoma brucei. The properties of the first discovered peroxisomal membrane channel – mammalian Pxmp2 protein – have also been characterized. The channels are apparently involved in the formation of peroxisomal shuttle systems and in the transmembrane transfer of various water-soluble metabolites including products of peroxisomal β-oxidation. These products are processed by a large set of peroxisomal enzymes including carnitine acyltransferases, enzymes involved in the synthesis of ketone bodies, thioesterases, and others. This review discusses recent data pertaining to solute permeability and metabolite transport systems in peroxisomal membranes and also addresses mechanisms responsible for the transfer of ATP and cofactors such as an ATP transporter and nudix hydrolases. This article is part of a Special Issue entitled: Metabolic Functions and Biogenesis of Peroxisomes in Health and Disease
Recommended from our members
Different opinion on the reported role of Poldip2 and ACSM1 in a mammalian lipoic acid salvage pathway controlling HIF-1 activation.
Paredes et al recently described Poldip2 as a novel regulator of mitochondrial lipoylation through stabilisation of ACSM1 (1). We have several concerns with their proposed model based on the following reasons.Wellcome 102770/Z/13/Z and 205252/Z/16/Z
Lister Institute RG8795
Avoiding unscheduled transcription in shared promoters: Saccharomyces cerevisiae Sum1p represses the divergent gene pair SPS18-SPS19 through a midsporulation element (MSE)
The sporulation-specific gene SPS18 shares a common promoter region with the oleic acid-inducible gene SPS19. Both genes are transcribed in sporulating diploid cells, albeit unevenly in favour of SPS18, whereas in haploid cells grown on fatty acids only SPS19 is highly activated. Here, SPS19 oleate-response element (ORE) conferred activation on a basal CYC1-lacZ reporter gene equally in both orientations, but promoter analysis using SPS18-lacZ reporter constructs with deletions identified a repressing fragment containing a midsporulation element (MSE) that could be involved in imposing directionality towards SPS19 in oleic acid-induced cells. In sporulating diploids, MSEs recruit the Ndt80p transcription factor for activation, whereas under vegetative conditions, certain MSEs are targeted by the Sum1p repressor in association with Hst1p and Rfm1p. Quantitative real-time PCR demonstrated that in haploid sum1Δ, hst1Δ, or rfm1Δ cells, oleic acid-dependent expression of SPS18 was higher compared with the situation in wild-type cells, but in the sum1Δ mutant, this effect was diminished in the absence of Oaf1p or Pip2p. We conclude that SPS18 MSE is a functional element repressing the expression of both SPS18 and SPS19, and is a component of a stricture mechanism shielding SPS18 from the dramatic increase in ORE-dependent transcription of SPS19 in oleic acid-grown cells
Peroxisomal membrane channel Pxmp2 in the mammary fat pad is essential for stromal lipid homeostasis and for development of mammary gland epithelium in mice
AbstractTo understand the functional role of the peroxisomal membrane channel Pxmp2, mice with a targeted disruption of the Pxmp2 gene were generated. These mice were viable, grew and bred normally. However, Pxmp2−/− female mice were unable to nurse their pups. Lactating mammary gland epithelium displayed secretory lipid droplets and milk proteins, but the size of the ductal system was greatly reduced. Examination of mammary gland development revealed that retarded mammary ductal outgrowth was due to reduced proliferation of epithelial cells during puberty. Transplantation experiments established the Pxmp2−/− mammary stroma as a tissue responsible for suppression of epithelial growth. Morphological and biochemical examination confirmed the presence of peroxisomes in the mammary fat pad adipocytes, and functional Pxmp2 was detected in the stroma of wild-type mammary glands. Deletion of Pxmp2 led to an elevation in the expression of peroxisomal proteins in the mammary fat pad but not in liver or kidney of transgenic mice. Lipidomics of Pxmp2−/−mammary fat pad showed a decrease in the content of myristic acid (C14), a principal substrate for protein myristoylation and a potential peroxisomal β-oxidation product. Analysis of complex lipids revealed a reduced concentration of a variety of diacylglycerols and phospholipids containing mostly polyunsaturated fatty acids that may be caused by activation of lipid peroxidation. However, an antioxidant-containing diet did not stimulate mammary epithelial proliferation in Pxmp2−/− mice.The results point to disturbances of lipid metabolism in the mammary fat pad that in turn may result in abnormal epithelial growth. The work reveals impaired mammary gland development as a new category of peroxisomal disorders
Dietary intake of n-3 long-chain polyunsaturated fatty acids and risk of myocardial infarction in coronary artery disease patients with or without diabetes mellitus: a prospective cohort study
Background: A beneficial effect of a high n-3 long-chain polyunsaturated fatty acid (LCPUFA) intake has been observed in heart failure patients, who are frequently insulin resistant. We investigated the potential influence of impaired glucose metabolism on the relation between dietary intake of n-3 LCPUFAs and risk of acute myocardial infarction (AMI) in patients with coronary artery disease. Methods: This prospective cohort study was based on the Western Norway B-Vitamin Intervention Trial and included 2,378 patients with coronary artery disease with available baseline glycosylated hemoglobin (HbA1c) and dietary data. Patients were sub-grouped as having no diabetes (HbA1c <5.7%), pre-diabetes (HbA1c ≥5.7%), or diabetes (previous diabetes, fasting baseline serum glucose ≥7.0, or non-fasting glucose ≥11.1 mmol/L). AMI risk was evaluated by Cox regression (age and sex adjusted), comparing the upper versus lower tertile of daily dietary n-3 LCPUFA intake. Results: The participants (80% males) had a mean age of 62 and follow-up of 4.8 years. A high n-3 LCPUFA intake was associated with reduced risk of AMI (hazard ratio 0.38, 95%CI 0.18, 0.80) in diabetes patients (median HbA1c = 7.2%), whereas no association was observed in pre-diabetes patients. In patients without diabetes a high intake tended to be associated with an increased risk (hazard ratio1.45, 95%CI 0.84, 2.53), which was significant for fatal AMI (hazard ratio 4.79, 95%CI 1.05, 21.90) and associated with lower HbA1c (mean ± standard deviation 4.55 ±0.68 versus 4.92 ±0.60, P = 0.02). No such differences in HbA1c were observed in those with pre-diabetes or diabetes. Conclusions: A high intake of n-3 LCPUFAs was associated with a reduced risk of AMI, independent of HbA1c, in diabetic patients, but with an increased risk of fatal AMI and lower HbA1c among patients without impaired glucose metabolism. Further studies should investigate whether patients with diabetes may benefit from having a high intake of n-3 LCPUFAs and whether patients with normal glucose tolerance should be careful with a very high intake of these fatty acids.publishedVersio
A monoclonal antibody raised against bacterially expressed MPV17 sequences shows peroxisomal, endosomal and lysosomal localisation in U2OS cells
Recessive mutations in the MPV17 gene cause mitochondrial DNA depletion syndrome, a fatal infantile genetic liver disease in humans. Loss of function in mice leads to glomerulosclerosis and sensineural deafness accompanied with mitochondrial DNA depletion. Mutations in the yeast homolog Sym1, and in the zebra fish homolog tra cause interesting, but not obviously related phenotypes, although the human gene can complement the yeast Sym1 mutation. The MPV17 protein is a hydrophobic membrane protein of 176 amino acids and unknown function. Initially localised in murine peroxisomes, it was later reported to be a mitochondrial inner membrane protein in humans and in yeast. To resolve this contradiction we tested two new mouse monoclonal antibodies directed against the human MPV17 protein in Western blots and immunohistochemistry on human U2OS cells. One of these monoclonal antibodies showed specific reactivity to a protein of 20 kD absent in MPV17 negative mouse cells. Immunofluorescence studies revealed colocalisation with peroxisomal, endosomal and lysosomal markers, but not with mitochondria. This data reveal a novel connection between a possible peroxisomal/endosomal/lysosomal function and mitochondrial DNA depletion
A monoclonal antibody raised against bacterially expressed MPV17 sequences shows peroxisomal, endosomal and lysosomal localisation in U2OS cells
Recessive mutations in the MPV17 gene cause mitochondrial DNA depletion syndrome, a fatal infantile genetic liver disease in humans. Loss of function in mice leads to glomerulosclerosis and sensineural deafness accompanied with mitochondrial DNA depletion. Mutations in the yeast homolog Sym1, and in the zebra fish homolog tra cause interesting, but not obviously related phenotypes, although the human gene can complement the yeast Sym1 mutation. The MPV17 protein is a hydrophobic membrane protein of 176 amino acids and unknown function. Initially localised in murine peroxisomes, it was later reported to be a mitochondrial inner membrane protein in humans and in yeast. To resolve this contradiction we tested two new mouse monoclonal antibodies directed against the human MPV17 protein in Western blots and immunohistochemistry on human U2OS cells. One of these monoclonal antibodies showed specific reactivity to a protein of 20 kD absent in MPV17 negative mouse cells. Immunofluorescence studies revealed colocalisation with peroxisomal, endosomal and lysosomal markers, but not with mitochondria. This data reveal a novel connection between a possible peroxisomal/endosomal/lysosomal function and mitochondrial DNA depletion
Characterization of two cotton cDNAs encoding trans-2-enoyl-CoA reductase reveals a putative novel NADPH-binding motif
Very long chain fatty acids are important components of plant lipids, suberins, and cuticular waxes. Trans-2-enoyl-CoA reductase (ECR) catalyses the fourth reaction of fatty acid elongation, which is NADPH dependent. In the present study, the expression of two cotton ECR (GhECR) genes revealed by quantitative RT-PCR analysis was up-regulated during cotton fibre elongation. GhECR1 and 2 each contain open reading frames of 933 bp in length, both encoding proteins consisting of 310 amino acid residues. GhECRs show 32% identity to Saccharomyces cerevisiae Tsc13p at the deduced amino acid level, and the GhECR genes were able to restore the viability of the S. cerevisiae haploid tsc13-deletion strain. A putative non-classical NADPH-binding site in GhECR was predicted by an empirical approach. Site-directed mutagenesis in combination with gas chromatography–mass spectrometry analysis suggests that G(5X)IPXG presents a putative novel NADPH-binding motif of the plant ECR family. The data suggest that both GhECR genes encode functional enzymes harbouring non-classical NADPH-binding sites at their C-termini, and are involved in fatty acid elongation during cotton fibre development
Mitochondrial 2,4-dienoyl-CoA Reductase Deficiency in Mice Results in Severe Hypoglycemia with Stress Intolerance and Unimpaired Ketogenesis
The mitochondrial β-oxidation system is one of the central metabolic pathways of energy metabolism in mammals. Enzyme defects in this pathway cause fatty acid oxidation disorders. To elucidate the role of 2,4-dienoyl-CoA reductase (DECR) as an auxiliary enzyme in the mitochondrial β-oxidation of unsaturated fatty acids, we created a DECR–deficient mouse line. In Decr−/− mice, the mitochondrial β-oxidation of unsaturated fatty acids with double bonds is expected to halt at the level of trans-2, cis/trans-4-dienoyl-CoA intermediates. In line with this expectation, fasted Decr−/− mice displayed increased serum acylcarnitines, especially decadienoylcarnitine, a product of the incomplete oxidation of linoleic acid (C18:2), urinary excretion of unsaturated dicarboxylic acids, and hepatic steatosis, wherein unsaturated fatty acids accumulate in liver triacylglycerols. Metabolically challenged Decr−/− mice turned on ketogenesis, but unexpectedly developed hypoglycemia. Induced expression of peroxisomal β-oxidation and microsomal ω-oxidation enzymes reflect the increased lipid load, whereas reduced mRNA levels of PGC-1α and CREB, as well as enzymes in the gluconeogenetic pathway, can contribute to stress-induced hypoglycemia. Furthermore, the thermogenic response was perturbed, as demonstrated by intolerance to acute cold exposure. This study highlights the necessity of DECR and the breakdown of unsaturated fatty acids in the transition of intermediary metabolism from the fed to the fasted state
- …