1,275 research outputs found

    Three Dimensional Quantum Geometry and Deformed Poincare Symmetry

    Full text link
    We study a three dimensional non-commutative space emerging in the context of three dimensional Euclidean quantum gravity. Our starting point is the assumption that the isometry group is deformed to the Drinfeld double D(SU(2)). We generalize to the deformed case the construction of the flat Euclidean space as the quotient of its isometry group ISU(2) by SU(2). We show that the algebra of functions becomes the non-commutative algebra of SU(2) distributions endowed with the convolution product. This construction gives the action of ISU(2) on the algebra and allows the determination of plane waves and coordinate functions. In particular, we show that: (i) plane waves have bounded momenta; (ii) to a given momentum are associated several SU(2) elements leading to an effective description of an element in the algebra in terms of several physical scalar fields; (iii) their product leads to a deformed addition rule of momenta consistent with the bound on the spectrum. We generalize to the non-commutative setting the local action for a scalar field. Finally, we obtain, using harmonic analysis, another useful description of the algebra as the direct sum of the algebra of matrices. The algebra of matrices inherits the action of ISU(2): rotations leave the order of the matrices invariant whereas translations change the order in a way we explicitly determine.Comment: latex, 37 page

    Colourful Poincaré symmetry, gravity and particle actions

    Get PDF
    We construct a generalisation of the three-dimensional Poincar\'e algebra that also includes a colour symmetry factor. This algebra can be used to define coloured Poincar\'e gravity in three space-time dimensions as well as to study generalisations of massive and massless free particle models. We present various such generalised particle models that differ in which orbits of the coloured Poincar\'e symmetry are described. Our approach can be seen as a stepping stone towards the description of particles interacting with a non-abelian background field or as a starting point for a worldline formulation of an associated quantum field theory

    ISO LWS Spectra of T Tauri and Herbig AeBe stars

    Get PDF
    We present an analysis of ISO-LWS spectra of eight T Tauri and Herbig AeBe young stellar objects. Some of the objects are in the embedded phase of star-formation, whereas others have cleared their environs but are still surrounded by a circumstellar disk. Fine-structure lines of [OI] and [CII] are most likely excited by far-ultraviolet photons in the circumstellar environment rather than high-velocity outflows, based on comparisons of observed line strengths with predictions of photon-dominated and shock chemistry models. A subset of our stars and their ISO spectra are adequately explained by models constructed by Chiang & Goldreich (1997) and Chiang et al. (2001) of isolated, passively heated, flared circumstellar disks. For these sources, the bulk of the LWS flux at wavelengths longward of 55 µm arises from the disk interior which is heated diffusively by reprocessed radiation from the disk surface. At 45 µm, water ice emission bands appear in spectra of two of the coolest stars, and are thought to arise from icy grains irradiated by central starlight in optically thin disk surface layers

    Spectral Energy Distributions of T Tauri and Herbig Ae Disks: Grain Mineralogy, Parameter Dependences, and Comparison with ISO LWS Observations

    Get PDF
    We improve upon the radiative, hydrostatic equilibrium models of passive circumstellar disks constructed by Chiang & Goldreich (1997). New features include (1) account for a range of particle sizes, (2) employment of laboratory-based optical constants of representative grain materials, and (3) numerical solution of the equations of radiative and hydrostatic equilibrium within the original 2-layer (disk surface + disk interior) approximation. We explore how the spectral energy distribution (SED) of a face-on disk depends on grain size distributions, disk geometries and surface densities, and stellar photospheric temperatures. Observed SEDs of 3 Herbig Ae and 2 T Tauri stars, including spectra from the Long Wavelength Spectrometer (LWS) aboard the Infrared Space Observatory (ISO), are fitted with our models. Silicate emission bands from optically thin, superheated disk surface layers appear in nearly all systems. Water ice emission bands appear in LWS spectra of 2 of the coolest stars. Infrared excesses in several sources are consistent with vertical settling of photospheric grains. While this work furnishes further evidence that passive reprocessing of starlight by flared disks adequately explains the origin of infrared-to-millimeter wavelength excesses of young stars, we emphasize how the SED alone does not provide sufficient information to constrain particle sizes and disk masses uniquely.Comment: Accepted to ApJ, 35 pages inc. 14 figures, AAS preprin

    A Note on B-observables in Ponzano-Regge 3d Quantum Gravity

    Full text link
    We study the insertion and value of metric observables in the (discrete) path integral formulation of the Ponzano-Regge spinfoam model for 3d quantum gravity. In particular, we discuss the length spectrum and the relation between insertion of such B-observables and gauge fixing in the path integral.Comment: 17 page

    Motion in Quantum Gravity

    Full text link
    We tackle the question of motion in Quantum Gravity: what does motion mean at the Planck scale? Although we are still far from a complete answer we consider here a toy model in which the problem can be formulated and resolved precisely. The setting of the toy model is three dimensional Euclidean gravity. Before studying the model in detail, we argue that Loop Quantum Gravity may provide a very useful approach when discussing the question of motion in Quantum Gravity.Comment: 30 pages, to appear in the book "Mass and Motion in General Relativity", proceedings of the C.N.R.S. School in Orleans, France, eds. L. Blanchet, A. Spallicci and B. Whitin

    Magnetocardiography at rest predicts cardiac death in patients with acute chest pain

    Get PDF
    Introduction: Sudden cardiac arrest is a major cause of morbidity and mortality worldwide and remains a major public health problem for which better non-invasive prediction tools are needed. Primary preventive therapies, such as implantable cardioverter defibrillators, are not personalized and not predictive. Most of these devices do not deliver life-saving therapy during their lifetime. The individual relationship between fatal arrhythmias and cardiac function abnormalities in predicting cardiac death risk has rarely been explored. Methods: We retrospectively analyzed the measurements at rest for 191 patients with acute chest pain (ACP) magnetocardiographically. Our recently introduced analyses are able to detect inhomogeneities of the depolarization and repolarization. Moreover, electrically silent phenomena—intracellular ionic currents as well as vortex currents—can be measured and quantified. All included ACP patients were recruited in 2009 at Yonsei University Hospital and were followed up until 2022. Results: During half of the follow-up period (6.5 years), 11 patients died. Out of all the included nine clinical, eight magnetocardiographical, and nine newly introduced magnetoionographical parameters we tested in this study, three parameters revealed themselves to be outstanding at predicting death: heart rate-corrected QT (QTc) prolongation, depression of repolarization current IKr + IKs, and serum creatinine (all significant in Cox regression, p < 0.05). They clearly predicted cardiac death over the 6.5 years duration (sensitivity 90.9%, specificity 85.6%, negative predictive accuracy 99.4%). Cardiac death risk was more than ninefold higher in patients with low repolarization reserve and QTc prolongation in comparison with the remaining patients with ACP (p < 0.001). The non-parametric Kaplan–Meier statistics estimated significantly lower survival functions from their lifetime data (p < 0.001). Discussion: To the best of our knowledge, these are the first data linking magnetocardiographical and magnetoionographical parameters and subsequent significant fatal events in people, suggesting structural and functional components to clinical life-threatening ventricular arrhythmogenesis. The findings support investigation of new prevention strategies and herald those new non-invasive techniques as complementary risk stratification tools.Peer Reviewe

    Duality and Braiding in Twisted Quantum Field Theory

    Full text link
    We re-examine various issues surrounding the definition of twisted quantum field theories on flat noncommutative spaces. We propose an interpretation based on nonlocal commutative field redefinitions which clarifies previously observed properties such as the formal equivalence of Green's functions in the noncommutative and commutative theories, causality, and the absence of UV/IR mixing. We use these fields to define the functional integral formulation of twisted quantum field theory. We exploit techniques from braided tensor algebra to argue that the twisted Fock space states of these free fields obey conventional statistics. We support our claims with a detailed analysis of the modifications induced in the presence of background magnetic fields, which induces additional twists by magnetic translation operators and alters the effective noncommutative geometry seen by the twisted quantum fields. When two such field theories are dual to one another, we demonstrate that only our braided physical states are covariant under the duality.Comment: 35 pages; v2: Typos correcte
    corecore