1,275 research outputs found
Three Dimensional Quantum Geometry and Deformed Poincare Symmetry
We study a three dimensional non-commutative space emerging in the context of
three dimensional Euclidean quantum gravity. Our starting point is the
assumption that the isometry group is deformed to the Drinfeld double D(SU(2)).
We generalize to the deformed case the construction of the flat Euclidean space
as the quotient of its isometry group ISU(2) by SU(2). We show that the algebra
of functions becomes the non-commutative algebra of SU(2) distributions endowed
with the convolution product. This construction gives the action of ISU(2) on
the algebra and allows the determination of plane waves and coordinate
functions. In particular, we show that: (i) plane waves have bounded momenta;
(ii) to a given momentum are associated several SU(2) elements leading to an
effective description of an element in the algebra in terms of several physical
scalar fields; (iii) their product leads to a deformed addition rule of momenta
consistent with the bound on the spectrum. We generalize to the non-commutative
setting the local action for a scalar field. Finally, we obtain, using harmonic
analysis, another useful description of the algebra as the direct sum of the
algebra of matrices. The algebra of matrices inherits the action of ISU(2):
rotations leave the order of the matrices invariant whereas translations change
the order in a way we explicitly determine.Comment: latex, 37 page
Colourful Poincaré symmetry, gravity and particle actions
We construct a generalisation of the three-dimensional Poincar\'e algebra that also includes a colour symmetry factor. This algebra can be used to define coloured Poincar\'e gravity in three space-time dimensions as well as to study generalisations of massive and massless free particle models. We present various such generalised particle models that differ in which orbits of the coloured Poincar\'e symmetry are described. Our approach can be seen as a stepping stone towards the description of particles interacting with a non-abelian background field or as a starting point for a worldline formulation of an associated quantum field theory
ISO LWS Spectra of T Tauri and Herbig AeBe stars
We present an analysis of ISO-LWS spectra of eight T Tauri and Herbig AeBe young stellar objects.
Some of the objects are in the embedded phase of star-formation, whereas others have cleared their environs
but are still surrounded by a circumstellar disk. Fine-structure lines of [OI] and [CII] are most likely excited by
far-ultraviolet photons in the circumstellar environment rather than high-velocity outflows, based on comparisons
of observed line strengths with predictions of photon-dominated and shock chemistry models. A subset of our
stars and their ISO spectra are adequately explained by models constructed by Chiang & Goldreich (1997) and
Chiang et al. (2001) of isolated, passively heated, flared circumstellar disks. For these sources, the bulk of the
LWS flux at wavelengths longward of 55 µm arises from the disk interior which is heated diffusively by reprocessed
radiation from the disk surface. At 45 µm, water ice emission bands appear in spectra of two of the coolest stars,
and are thought to arise from icy grains irradiated by central starlight in optically thin disk surface layers
Spectral Energy Distributions of T Tauri and Herbig Ae Disks: Grain Mineralogy, Parameter Dependences, and Comparison with ISO LWS Observations
We improve upon the radiative, hydrostatic equilibrium models of passive
circumstellar disks constructed by Chiang & Goldreich (1997). New features
include (1) account for a range of particle sizes, (2) employment of
laboratory-based optical constants of representative grain materials, and (3)
numerical solution of the equations of radiative and hydrostatic equilibrium
within the original 2-layer (disk surface + disk interior) approximation. We
explore how the spectral energy distribution (SED) of a face-on disk depends on
grain size distributions, disk geometries and surface densities, and stellar
photospheric temperatures. Observed SEDs of 3 Herbig Ae and 2 T Tauri stars,
including spectra from the Long Wavelength Spectrometer (LWS) aboard the
Infrared Space Observatory (ISO), are fitted with our models. Silicate emission
bands from optically thin, superheated disk surface layers appear in nearly all
systems. Water ice emission bands appear in LWS spectra of 2 of the coolest
stars. Infrared excesses in several sources are consistent with vertical
settling of photospheric grains. While this work furnishes further evidence
that passive reprocessing of starlight by flared disks adequately explains the
origin of infrared-to-millimeter wavelength excesses of young stars, we
emphasize how the SED alone does not provide sufficient information to
constrain particle sizes and disk masses uniquely.Comment: Accepted to ApJ, 35 pages inc. 14 figures, AAS preprin
A Note on B-observables in Ponzano-Regge 3d Quantum Gravity
We study the insertion and value of metric observables in the (discrete) path
integral formulation of the Ponzano-Regge spinfoam model for 3d quantum
gravity. In particular, we discuss the length spectrum and the relation between
insertion of such B-observables and gauge fixing in the path integral.Comment: 17 page
Motion in Quantum Gravity
We tackle the question of motion in Quantum Gravity: what does motion mean at
the Planck scale? Although we are still far from a complete answer we consider
here a toy model in which the problem can be formulated and resolved precisely.
The setting of the toy model is three dimensional Euclidean gravity. Before
studying the model in detail, we argue that Loop Quantum Gravity may provide a
very useful approach when discussing the question of motion in Quantum Gravity.Comment: 30 pages, to appear in the book "Mass and Motion in General
Relativity", proceedings of the C.N.R.S. School in Orleans, France, eds. L.
Blanchet, A. Spallicci and B. Whitin
Magnetocardiography at rest predicts cardiac death in patients with acute chest pain
Introduction: Sudden cardiac arrest is a major cause of morbidity and mortality worldwide and remains a major public health problem for which better non-invasive prediction tools are needed. Primary preventive therapies, such as implantable cardioverter defibrillators, are not personalized and not predictive. Most of these devices do not deliver life-saving therapy during their lifetime. The individual relationship between fatal arrhythmias and cardiac function abnormalities in predicting cardiac death risk has rarely been explored.
Methods: We retrospectively analyzed the measurements at rest for 191 patients with acute chest pain (ACP) magnetocardiographically. Our recently introduced analyses are able to detect inhomogeneities of the depolarization and repolarization. Moreover, electrically silent phenomena—intracellular ionic currents as well as vortex currents—can be measured and quantified. All included ACP patients were recruited in 2009 at Yonsei University Hospital and were followed up until 2022.
Results: During half of the follow-up period (6.5 years), 11 patients died. Out of all the included nine clinical, eight magnetocardiographical, and nine newly introduced magnetoionographical parameters we tested in this study, three parameters revealed themselves to be outstanding at predicting death: heart rate-corrected QT (QTc) prolongation, depression of repolarization current IKr + IKs, and serum creatinine (all significant in Cox regression, p < 0.05). They clearly predicted cardiac death over the 6.5 years duration (sensitivity 90.9%, specificity 85.6%, negative predictive accuracy 99.4%). Cardiac death risk was more than ninefold higher in patients with low repolarization reserve and QTc prolongation in comparison with the remaining patients with ACP (p < 0.001). The non-parametric Kaplan–Meier statistics estimated significantly lower survival functions from their lifetime data (p < 0.001).
Discussion: To the best of our knowledge, these are the first data linking magnetocardiographical and magnetoionographical parameters and subsequent significant fatal events in people, suggesting structural and functional components to clinical life-threatening ventricular arrhythmogenesis. The findings support investigation of new prevention strategies and herald those new non-invasive techniques as complementary risk stratification tools.Peer Reviewe
Duality and Braiding in Twisted Quantum Field Theory
We re-examine various issues surrounding the definition of twisted quantum
field theories on flat noncommutative spaces. We propose an interpretation
based on nonlocal commutative field redefinitions which clarifies previously
observed properties such as the formal equivalence of Green's functions in the
noncommutative and commutative theories, causality, and the absence of UV/IR
mixing. We use these fields to define the functional integral formulation of
twisted quantum field theory. We exploit techniques from braided tensor algebra
to argue that the twisted Fock space states of these free fields obey
conventional statistics. We support our claims with a detailed analysis of the
modifications induced in the presence of background magnetic fields, which
induces additional twists by magnetic translation operators and alters the
effective noncommutative geometry seen by the twisted quantum fields. When two
such field theories are dual to one another, we demonstrate that only our
braided physical states are covariant under the duality.Comment: 35 pages; v2: Typos correcte
- …