133 research outputs found

    Accurate Transponder Calibrations with the Novel Three-Transponder Method

    Get PDF
    Transponders are, besides trihedral corner reflectors, the most commonly used measurement standards in radiometric SAR calibration. They allow signal recording for the reconstruction of the azimuth pattern of the SAR system, adjustments of the backscattering matrix for polarimetric applications, and radar cross sections (RCSs) which are potentially much larger than those of passive point targets. These advantages led DLR to develop, manufacture, and install three new, accurate C-band “Kalibri” transponders in South Germany, which are now being used for the calibration and monitoring of the Copernicus Sentinel-1A satellite. Before the transponders could be used as radiometric measurement standards, they needed to be calibrated themselves. In an effort to find the most accurate RCS calibration approach for the given transponder design, several existing methods were compared [1], and a new, potentially highly accurate method, devised which exploits the specific design of the Kalibri transponders [2]. The new “three-transponder method” is similar in principle to the known “three-antenna method”, but is based on the radar equation instead of the Friis transmission formula. The approach exploits the fact that modern transponders like the “Kalibri” device can also be operated as radars because of the integrated digital sub-system (which is needed to implement a digital delay line and incorporates an AD and DA converter). To conduct a complete measurement, three transponders and three measurements (with one transponder pair each) are required; refined measurement schemas are also possible. In comparison to existing methods, no additional radiometric measurement standard is needed, which so far has been one of the limiting factors in accomplishing lower calibration uncertainties. Measurement traceability is achieved by tracing a comparatively simple length measurement back to a national realization of the meter. Such a length measurements can be performed with high accuracy. The presentation will include the setup and the measurement results of a first demonstration measurement campaign. Despite remaining challenges in the practical implementation, the uncertainty analysis shows that the method is a good candidate for highly accurate transponder RCS calibrations in the future

    Gravity waves in parity-violating Copernican universes

    Get PDF
    In recent work minimal theories allowing the variation of the cosmological constant, Λ , by means of a balancing torsion, have been proposed. It was found that such theories contain parity violating homogeneous and isotropic solutions, due to a torsion structure called the Cartan spiral staircase. Their dynamics are controlled by Euler and Pontryagin quasitopological terms in the action. Here we show that such theories predict a dramatically different picture for gravitational wave fluctuations in the parity violating branch. If the dynamics are ruled solely by the Euler-type term, then linear tensor mode perturbations are entirely undetermined, hinting at a new type of gauge invariance. The Pontryagin term not only permits for phenomenologically sounder background solutions (as found in previous literature), but for realistic propagation of gravitational wave modes. These have the general property that the right and left handed gravitational waves propagate with different speeds. More generally they imply modified dispersion relations for the graviton, with both parity violating and non-violating deformations, including an effective mass for both gravitational wave polarizations. We discuss the observational constraints and predictions of these theories

    Small molecule activators of SIRT1 replicate signaling pathways triggered by calorie restriction in vivo

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Calorie restriction (CR) produces a number of health benefits and ameliorates diseases of aging such as type 2 diabetes. The components of the pathways downstream of CR may provide intervention points for developing therapeutics for treating diseases of aging. The NAD<sup>+</sup>-dependent protein deacetylase SIRT1 has been implicated as one of the key downstream regulators of CR in yeast, rodents, and humans. Small molecule activators of SIRT1 have been identified that exhibit efficacy in animal models of diseases typically associated with aging including type 2 diabetes. To identify molecular processes induced in the liver of mice treated with two structurally distinct SIRT1 activators, SIRT501 (formulated resveratrol) and SRT1720, for three days, we utilized a systems biology approach and applied Causal Network Modeling (CNM) on gene expression data to elucidate downstream effects of SIRT1 activation.</p> <p>Results</p> <p>Here we demonstrate that SIRT1 activators recapitulate many of the molecular events downstream of CR <it>in vivo</it>, such as enhancing mitochondrial biogenesis, improving metabolic signaling pathways, and blunting pro-inflammatory pathways in mice fed a high fat, high calorie diet.</p> <p>Conclusion</p> <p>CNM of gene expression data from mice treated with SRT501 or SRT1720 in combination with supporting <it>in vitro </it>and <it>in vivo </it>data demonstrates that SRT501 and SRT1720 produce a signaling profile that mirrors CR, improves glucose and insulin homeostasis, and acts via SIRT1 activation <it>in vivo</it>. Taken together these results are encouraging regarding the use of small molecule activators of SIRT1 for therapeutic intervention into type 2 diabetes, a strategy which is currently being investigated in multiple clinical trials.</p

    Variations of the Transponder’s RCS Due to Environmental Impacts on the Antennas

    Get PDF
    Transponders for synthetic aperture radar (SAR) need to be extremely precise in order to qualify as absolute calibration references for the increasingly demanding new SAR systems. To guarantee highest accuracy and stability even components which normally are considered ideal, have to be be taken into account. This paper shows the environmental influence on the antenna gain and thus on the overall transponder gain, compares two different housing designs and explains why this particular design has been chosen for the new transponder currently being developed at the DLR

    Linearity Measurements of an Accurate Transponder for Calibrating Future Spaceborne SAR Systems

    Get PDF
    The requirements on new spaceborne synthetic aperture radar (SAR) missions are always pushed towards better image quality with respect to signal-to-noise ratio, radiometric accuracy, and spatial resolution. Therefore an accurate calibration of the SAR system and the final product is essential. The quality of the calibration depends on the utilized reference target. In this paper a new active calibration target (transponder), currently under development at DLR, and measurement results of the linearity of the high frequency section is presented
    corecore