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Background
Wachspress [1] introduced the concept of defining basis functions on any wedge form, 
which also yields interpolants on polytopes of any convex shapes. These shape func-
tions are unconventional when compared to the polynomials used in the conventional 
finite elements. The use of elements with arbitrary number of sides provides flexibility 
in automatic mesh manipulation. For example, the domain can be discretized without a 
need to maintain a particular element topology. This is advantageous in adaptive mesh 
refinement, where a straightforward subdivision of individual elements usually results in 
hanging nodes. Traditionally, this is eliminated by introducing additional edges/faces to 
retain conformity. This can be alleviated if the computations are directly on meshes with 
hanging nodes. However, until recently elements with arbitrary number of sides did not 
find their applications in the computational mechanics, partly because of the associated 
difficulties with mesh generation and numerical integration. With the pioneering work 
of Alwood and Cornes [2], Sukumar and Tabarraei [3], Dasgupta [4], to name a few, now 
discretization of the domain with finite elements having arbitrary number of sides has 
gained increased attention [3, 5–10]. This has led to a new area of finite elements called 
‘polygonal finite elements.’ There are different techniques to compute the basis functions 
over arbitrary polygons. Some of them include (a) using length and area measures [1]; 
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(b) natural neighbor interpolants [11]; (c) maximum entropy approximant [12]; and (d) 
harmonic shape functions [8]. As the approximation functions over arbitrary polygonal 
elements are usually non-polynomial (in particular, rational polynomials) which intro-
duces difficulties in the numerical integration, improving numerical integration over 
polytopes has gained increasing attention [3, 13–15]. It is beyond the scope of this paper 
to review advances in polygonal finite element methods. Interested readers are referred 
to the literature [16, 17] and references therein for detailed discussion. Once the basis 
functions are constructed, the conventional Galerkin procedure is normally employed to 
solve the governing equations over the polygonal/polyhedral meshes.    

Sukumar [18] used Voronoï cells and natural neighbor interpolants to develop a finite 
difference method on unstructured grids. Rashid and Gullet  [19] proposed a variable 
element topology finite element method, in which shape functions for convex and non-
convex elements are computed in the physical space using constrained minimization 
procedure. Based on the assumed stress hybrid formulation, Ghosh et al. [20] developed 
the Voronoï cell finite element method. Tiwary et al. [21] studied the behavior of micro-
structures with irregular geometries. Liu et al. [22–24] generalized the concept of strain 
smoothing technique to arbitrarily shaped polygons. The main idea is to write the strain 
as the divergence of a spatial average of the compatible strain field. On another front, a 
fundamental solution less method (Scaled Boundary Method) was introduced by Wolf 
and Song [25]. It shares the advantages of the FEM and the boundary element method 
(BEM). Like the FEM, no fundamental solution is required, and like the BEM, the spatial 
dimension is reduced by one, since only the boundary needs to be discretized, resulting 
in a decrease in the total degrees of freedom. Ooi et al. [26] employed scaled boundary 
formulation in polygonal elements to study crack propagation.

Apart from the aforementioned formulations, recent studies, among others, include devel-
oping polygonal elements based on the virtual nodes  [27] and the virtual element meth-
ods [28]. The other possible approach is to employ basis functions that satisfy the differential 
equation locally  [29, 30]. This method has been studied in detail in [31, 32] and extended 
to higher order polygons in [5, 33]. Zienkiewicz [34] presented a concise discussion on dif-
ferent approximation procedures to differential equations. It was shown that Trefftz-type 
approximation is a particular form of weighted residual approximation. This can be used to 
generate hybrid finite elements. Earlier studies employed boundary-type approximation asso-
ciated with Trefftz to develop special type finite elements, for example, elements with holes/
voids [35, 36], for plate analysis [37–39]. Recently, the idea of employing local solutions over 
arbitrary finite elements has been investigated in [5, 31–33]. However, its convergence prop-
erties and accuracy when applied to linear elasticity need to be investigated.

In this paper, hybrid Trefftz arbitrary polygons will be formulated and its convergence 
properties and accuracy will be numerically studied with a few benchmark problems in 
the context of linear elasticity. An optimal number of T-complete functions are chosen 
based on the number of nodes of the polygon and degrees of freedom per node. The sali-
ent features of the approach are (a) only the boundary of the element is discretized with 
1D finite elements, and (b) explicit form of the shape functions and special numerical 
integration scheme are not required to compute the stiffness matrix.

The paper commences with an overview of the governing equations for elasticity and 
the corresponding Galerkin form. Section “Overview of hybrid Trefftz finite element 
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method" introduces a hybrid Trefftz-type approximation over arbitrary polytopes. The 
efficiency, the accuracy, and the convergence properties of the HTFEM (Hybrid Trefftz 
Finite Element Method) are demonstrated with a few benchmark problems in section 
“Numerical examples”. The numerical results from the HTFEM are compared with the 
analytical results and with the polygonal FEM with Laplace/Wachspress interpolants, 
followed by concluding remarks in the last section.

Governing equations and weak form
For a 2D static linear elasticity problem defined in the domain � bounded by Ŵ = Ŵu

⋃

Ŵt , 
Ŵu

⋂

Ŵt = ∅, in the absence of body forces, the governing equation is given by

with the following conditions prescribed on the boundary:

where σ is the stress tensor. The discrete equations for this problem are formulated from 
the Galerkin weak form:

where u and δu are the trial and the test functions, respectively, and D is the material con-
stitutive matrix. The FEM uses the following trial and test functions:

where NP is the total number of nodes in the mesh, N is the shape function matrix, and dI 
is the vector of degrees of freedom associated with node I. Upon substituting Eq. (4) into 
Eq. (3) and invoking the arbitrariness of δu, we obtain the following discretized algebraic 
system of equations:

with

where K is the stiffness matrix and �h is the discretized domain formed by the union 
of elements �e. The stiffness matrix is computed over each element and assembled to 
the global matrix. The size of the stiffness matrix depends on the number of nodes in an 
element.

(1)∇ · σ = 0 in �

(2)
u = u in Ŵu

σ · n = t on Ŵt

,

(3)

∫

�

(∇u)TD(∇δu) d�−

∫

Ŵt

(δu)Tt dŴ = 0
,

(4)uh(x) =

NP
∑

I=1

NI (x)dI , δuh(x) =

NP
∑

I=1

NI (x)δdI ,

(5)Kd = f

(6)

K =

∫

�h

BTDB d�

f =

∫

Ŵt

NTt dŴ,
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Generalization to arbitrary polygons

The growing interest in the generalization of FE over arbitrary meshes has opened up a 
new area of finite elements called ‘polygonal finite elements.’ In polygonal finite elements, 
the number of sides of an element is not restricted to three or four as in the case of 2D. 
The Voronoï tessellation is a fundamental geometrical construct to generate a polygonal 
mesh covering a given domain. Polygonal meshes can be generated from Voronoï dia-
grams. The Voronoï diagram is a subdivision of the domain into regions V (pI ), such that 
any point in V (pI ) is closer to node pI than to any other node. Figure 1 shows a Voronoï 
diagram of a point P. The first-order Voronoï V(N) is a subdivision of the Euclidean space 
R
2 into convex regions, mathematically:

where d(xI , xJ ), the Euclidean matrix, is the distance between xI and xJ. The quality of 
the generated polygonal mesh depends on the randomness in the scattered points. Fig-
ure 2 shows a typical Voronoï tessellation of two sets of scattered dataset. The quality 
of a polygonal mesh determines the accuracy of the solution [3]. To improve the quality 
of the Voronoï tessellation, the generating point of each Voronoï cell can be used as its 
center of mass, leading to a special type of Voronoï diagram, called the centroidal Vornoï 
tessellation (CVT) [40]. Sieger et al. [41] presented an optimizing technique to improve 
the Voronoï diagrams for use in FE computations.

Overview of hybrid Trefftz finite element method
The basic idea in the Trefftz FEM is to employ the series of the homogeneous solution 
to the governing differential equation (see Eq. 1) as the approximation function to model 
the displacement field within the domain and an independent set of functions to rep-
resent the boundary and to satisfy inter-element compatibility (see Fig.  3). The set of 

(7)TI =
{

x ∈ R
2 : d(x, xI ) < d(x, xJ )∀J �= I

}

,

1

2

3

45

P

h1

S1

h2

S2

h3

S3

h4
S4

h5

S5

Fig. 1  Voronoï diagram of a point P
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functions that are used to represent the displacement field within the domain are also 
called as T-complete set. The displacement field within an element can be written as

where c are the vectors of undetermined coefficients and NI are the approximation 
functions that are selected from the series solution of the homogeneous part of the 
governing differential equation (see Eq. 1). For linear elastostatics, based on the Mush-
elishvili’s complex variable formulation, the NI and the corresponding stress fields are 
given by [29]

where J = 1, 2, 3, 4, k = 1, 2, . . .; Z1k = iκzk + iκzzk−1, Z2k = κzk − kzzk−1, Z3k = izk  , 
and Z4k = −zk ; R1k = 2ikzk−1,R2k = 2kzk−1,R3k = 0,R4k = 0 ; and S1k = ik(k − 1)zk−2 
z, S2k = k(k − 1)zk−2z, S3k = iKzk−1

, S4k = kzk−1.

(8)u = Nc, x ∈ �,

(9)

NJk =
1

2G

�

ReZJk

ImZJk

�

TJk =







Re(RJk − SJk)
Re(RJk + SJk)

ImSJk







,

(a)

(b)
Fig. 2  Voronoï tessellation, where the red dots are the seed points: a scattered dataset; b polygonal mesh 
after few iterations
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However, the intra-element displacement field given by Eq. (8) is non-conforming 
across the inter-element boundary. The unknown coefficients c are computed from the 
external boundary conditions and/or from the continuity conditions on the inter-ele-
ment boundary. Of the various methods available to enforce these conditions, in this 
study, we use the hybrid technique. In this technique, the elements are linked through 
an auxiliary conforming displacement frame which has the same form as in the conven-
tional FEM. The displacement field on the element boundary, or otherwise called frame, 
is given by

where qI are the unknowns of the problem and ÑI are the standard 1D FE shape 
functions. To satisfy the inter-element continuity, a modified variational form is 
employed [29], given by:

where ŴeI is the inter-element boundary, Ŵe1 = Ŵu ∩ Ŵe, and Ŵe2 = Ŵσ ∩ Ŵe. The mini-
mization of the modified variational principle given by Eq. (11) leads to the following 
system of algebraic equations:

where

and

(10)ũ = Ñq, x ∈ Ŵ,

(11)� =
1

2

∫

�

σ
TD−1

σ d�−

∫

Ŵe1

tδu dŴ +

∫

Ŵe2

(t − t)u dŴ −

∫

ŴeI

t ˜δu dŴ
,

(12)Kd = f ,

K = GTH−1G

F =

∫

Ŵ

Ñt dŴ,

Fig. 3  Hybrid Trefftz polygonal element with a description of inter- and intra-element field
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where Q = AT, and

where n1 and n2 are the outward normals. The integrals in the above equation can be 
computed by employing standard Gaussian quadrature rules. It is noted that in the com-
putation of the stiffness matrix, we have to compute the inverse of the matrix H. The 
necessary condition for the matrix H to be of full rank is

where Ndof is the total number of degrees of freedom of the element and mmin is the 
minimum number of T-complete functions to be used. Additionally, if mmin does not 
guarantee a matrix with full rank, full rank can be achieved by suitably increasing the 
number of T-complete functions.

Numerical examples
In this section, we present the convergence and accuracy of the arbitrary polygons with 
local Trefftz functions using benchmark problems in the context of linear elasticity. The 
results from the proposed approach are compared with analytical solution where avail-
able and with the conventional polygonal finite element method with Laplace interpo-
lants. To discuss the results, we employ the following convention:

• • PFEM Polygonal finite element method with Laplace/Wachspress interpolants (con-
ventional approach). The numerical integration within each element is done by sub-
dividing the polygon into triangles and employing a sixth-order Dunavant quadra-
ture rule.

• • HT-PFEM Hybrid Trefftz polygonal finite element method. Within each polygon, 
T-complete functions are employed to compute the stiffness matrix. One-dimen-
sional Gaussian quadrature is employed along the boundary of the polygon and the 
order of the quadrature depends on the number of T-complete functions employed.

The built-in Matlab® function voronoin and Matlab® functions in PolyTop [42] for build-
ing the mesh-connectivity are used to create the polygonal meshes. Interested readers 
are referred to the corresponding author to obtain a MATLAB code for all the test cases 
presented in this manuscript. For the purpose of error estimation, we employ the rela-
tive error in the displacement norm and in the energy norm, given by:

Displacement norm

H =

∫

Ŵ

QTN dŴ; G =

∫

Ŵ

QTÑ dŴ,

A =

[

n1 0 n2
0 n2 n1

]

and T = ∇N,

(13)mmim = Ndof − 1,

(14)||u − uh||L2(�) =

√

∫

�
(u − uh) · (u − uh) d�
√

∫

�
u · u d�

.
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Energy norm

where u, ε are the analytical solution or a reference solution and uh, εh are the numerical 
solution.

Cantilever beam bending

A two-dimensional cantilever beam was subjected to a parabolic shear load at the free 
end. The domain is discretized with arbitrary polygonal elements. See Fig. 4 for geom-
etry, boundary conditions, and representative polygonal mesh. The geometry of the can-
tilever: length L = 10 and height D = 2. The material properties are as follows: Young’s 
modulus, E = 3e7, Poisson’s ratio ν = 0.25, and the parabolic shear force P = 150. The 
exact solution for displacements is given by

(15)||u − uh||H1(�) =

√

∫

�
(ε − ε

h)TD(ε − ε
h) d�

√

∫

�
ε
TDε d�

,

y

x
D

L
P

(a)

(b)
Fig. 4  Cantilever beam: a geometry and boundary conditions and b representative polygonal mesh. The 
domain is discretized with 100 elements
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where I = D3/12 is the moment of inertia, E = E, ν = ν, and E = E/(1− ν2), 
ν = ν/(1− ν) for plane stress and plane strain, respectively.

The numerical convergence of the relative error in the displacement norm and the rel-
ative error in the energy norm are shown in Fig. 5. The results from the HT-PFEM and 

(16)

u(x, y) =
Py

6EI

[

(9L− 3x)x + (2+ ν)

(

y2 −
D2

4

)]

v(x, y) = −
P

6EI

[

3νy2(L− x)+ (4 + 5ν)
D2x

4
+ (3L− x)x2

]

,

(a)

(b)
Fig. 5  Bending of thick cantilever beam: convergence results for a the relative error in the displacement 
norm (L2) and b the relative error in the energy norm. The rate of convergence is also shown, where m is the 
average slope. In case of the polygonal SBFEM, p denotes the order of the shape functions along each edge 
of the polygon
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Polygonal FEM are compared with the available analytical solution. Both the Polygonal 
FEM and the HT-PFEM yield optimal convergence in L2 and H1 norm. It is seen that 
with mesh refinement, both the methods converge to the exact solution. An estimation 
of the convergence rate is also shown. From Fig. 5, it can be observed that the HT-PFEM 
yields more accurate results and better convergence rate.

Infinite plate with a circular hole

In this example, consider an infinite plate with a traction free hole under uni-axial ten-
sion (σ = 1) along x-axis. See Fig. 6 for geometry description, boundary description, and 
representative polygonal mesh. The exact solution of the principal stresses in polar coor-
dinates (r, θ) is given by

σ

y

a

x

L

L

(a)

(b)
Fig. 6  Infinite plate with a circular hole: a geometry and boundary conditions and b representative polygo-
nal mesh
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where a is the radius of the hole. Owing to symmetry, only one quarter of the plate is 
modeled. The material properties are as follows: Young’s modulus E = 105 and Pois-
son’s ratio ν = 0.3. In this example, analytical tractions are applied on the boundary. 
The domain is discretized with polygonal elements, and along each edge of the polygon, 
the shape function is linear. The convergence rate in terms of the displacement norm 
is shown in Fig. 7. The relative error in the displacement norm for the PFEM and HT-
PFEM is shown in Fig. 7. It can be seen that the HT-PFEM yields more accurate results 
when compared with the PFEM. The HT-PFEM yields slightly a better convergence rate 
when compared to the PFEM.

Circular beam

As a last example, consider a circular cantilevered beam subjected to a prescribed dis-
placement uo = −0.01 at the free end. The material property, boundary conditions 
considered for this study, and a representative polygonal mesh are shown in Fig. 8. The 
material is assumed to linear elastic and in a state of plane stress. The exact solution for 
the elastic energy is given by

(17)

σ11(r, θ) = 1−
a2

r2

(

3

2
(cos 2θ + cos 4θ)

)

+
3a4

2r4
cos 4θ

σ22(r, θ) = −
a2

r2

(

1

2
(cos 2θ − cos 4θ)

)

−
3a4

2r4
cos 4θ

σ12(r, θ) = −
a2

r2

(

1

2
(sin 2θ + sin 4θ)

)

+
3a4

2r4
sin 4θ ,

(18)U =
1

π
(ln2− 0.6).

Fig. 7  Infinite plate with a circular hole: convergence results for the relative error in the displacement norm 
(L2). The rate of convergence is also shown, where m is the average slope
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The convergence in the relative error in the energy norm is shown in Fig. 9. It can be 
seen that the HT-PFEM yields more accurate results when compared with the PFEM. 
The HT-PFEM yields a convergence rate of 1.82 and the PFEM yields a convergence rate 
of 1.0. Both the methods converge to the exact energy with mesh refinement.

Next, we consider two problems with complex boundary: (a) a wrench and (b) a two-
dimensional crane hook, both subjected to a concentrated force, P = 210 KN. The 
geometry, loading, and boundary conditions are shown in Figs. 10 and 11 for the wrench 
and the crane hook, respectively. The material properties are as follows: Young’s modu-
lus E = 3e7 and Poisson’s ratio ν = 0.3. The domain is discretized with arbitrary polygo-
nal elements. The appropriate number of T-functions and integration points are chosen 
based on the number of sides of the polygonal element. As these two problems do not 

(a) (b)
Fig. 8  Geometry, boundary conditions, and representative polygonal mesh for a curved cantilever circular 
beam. The displacements at the left end are constrained and a constant displacement is applied at the other 
end

Fig. 9  Circular beam: convergence results for the relative error in the energy norm (L2). The rate of conver-
gence is also shown, where m is the average slope
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have a closed form solution, we use the results from a FE simulation having 29,016 and 
33,104 nodes for wrench and crane hook domain, respectively, as a reference solution. 
The convergence of the total strain energy with mesh refinement is shown in Fig. 12 for 
the wrench and crane hook domain. The results from the present method are compared 
with the results from the conventional PFEM. It is inferred that the present method con-
verges faster than the conventional PFEM. Moreover, for the same number of degrees of 
freedom, the present method is more accurate than the PFEM with triangulation.

Concluding remarks
In this paper, we studied the convergence and accuracy of hybrid Trefftz polygonal 
finite elements. The hybrid Trefftz finite elements were constructed by employing the 
T-complete set of functions and a set of independent auxiliary field on the boundary. 
From the numerical studies presented, it is seen that hybrid Trefftz finite elements yield 

l = 2

d2 = 0.6

r2 = 0.5

d1 = 0.35

r1 = 0.3

P

(a)

0 0.5 1 1.5 2 2.5

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

(b)
Fig. 10  A wrench subjected to point load: a geometry and boundary conditions and b representation 
polygonal mesh
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more accurate results and better convergence rate when compared to the conventional 
polygonal finite elements with Laplace interpolants. One of the salient features of the 
hybrid Trefftz approach is that special finite elements with embedded cracks/voids can 
be constructed. This can then be combined with the extended finite element method to 

R1 = 20

R2 = 80

R3 = 35

R4 = 50

l
1
 = 14.8

l
2
 = 1.86

D1 = 20

D2 = 38

o

P

A

(a)

-60 -40 -20 0 20 40 60 80 100

-40

-20

0

20

40

60

80

100

(b)
Fig. 11  A crane hook subjected to concentrated force: a geometry and boundary conditions and b repre-
sentative mesh
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model strong and weak discontinuities and singularities within the domain. However, 
the success of the method relies on the knowledge of T-complete function. This is a topic 
for future communication.
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