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In recent work minimal theories allowing the variation of the cosmological constant, Λ, by means of a bal-
ancing torsion, have been proposed. It was found that such theories contain parity violating homogeneous and
isotropic solutions, due to a torsion structure called the Cartan spiral staircase. Their dynamics are controlled by
Euler and Pontryagin quasi-topological terms in the action. Here we show that such theories predict a dramati-
cally different picture for gravitational wave fluctuations in the parity violating branch. If the dynamics are ruled
solely by the Euler-type term, then linear tensor mode perturbations are entirely undetermined, hinting at a new
type of gauge invariance. The Pontryagin term not only permits for phenomenologically sounder background
solutions (as found in previous literature), but for realistic propagation of gravitational wave modes. These
have the general property that the right and left handed gravitational waves propagate with different speeds.
More generally they imply modified dispersion relations for the graviton, with both parity violating and non-
violating deformations, including an effective mass for both gravitational wave polarizations. We discuss the
observational constraints and predictions of these theories.

I. INTRODUCTION

The cosmological constant, Λ, and the Copernican princi-
ple are two cornerstones of modern cosmology. In this paper
we explore the implications of the fact that their story may be
more intricate than it is usually assumed. That the cosmologi-
cal “constant” does not actually need to be constant in theories
with torsion has been noted, for example, in [1, 2]. It is not
new that torsion can change dramatically the perspective of
many problems (for a selection of examples see [3–14]). It
has also been noted [5, 15] that under the shadow of torsion,
homogeneity and isotropy do not imply parity invariance. The
Copernican principle therefore has a choice between incorpo-
rating parity invariance or not. Parity odd solutions in homo-
geneous and isotropic models employ a geometrical structure
which has been known since the inception of General Relativ-
ity: Cartan’s spiral staircase [5, 16]. Thus, a varying Lambda
may go hand in hand with parity violating Copernican models,
creating an interesting synergy.

Within the theories considered in [1, 15] the inverse of
Lambda becomes canonically conjugate to the Chern-Simons
invariant1 [20, 21]. The radical implications of this fact in
quantum cosmology were examined in [21] (see [22, 23] for
the background problem). In the context of classical solutions,
the dynamics are then ruled by two topological invariants, of
which the Chern-Simons functional is the density. Depending
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on whether one considers the real or imaginary parts of the
Chern-Simons term, these are the Pontryagin and the Euler
(or Gauss-Bonnet) invariants. Since these terms appear in the
action multiplied by Λ−1, they are only topological invariants
if Λ is a constant. The variability of Lambda disrupts their
topological nature, and so they are quasi-topological terms (to
use the terminology of [1]).

The theories considered in [1, 2, 15] have the virtue that
they do not add new parameters to gravity with respect to Ein-
stein’s theory with a cosmological constant. The coefficient
of the Euler term is fully fixed by the Bianchi identities (from
solutions without matter), so that the only true new parame-
ter is the numerical coefficient of the Pontryagin term, should
we consider it. However, for these theories Λ is longer a free
parameter, as it is in Einstein’s theory. Hence, a theory with
the Euler term alone would have fewer free parameters than
General Relativity, as argued in [1]. As explained in [2] such
a theory conflicts dramatically with basic Hot Big Bang cos-
mology (it refuses to accept a radiation epoch). The intro-
duction of the Pontryagin term allows for a viable expansion
history (as studied in [15]), leaving the working theory with
the same number of free parameters as General Relativity.

It was found in [15] that the parity-even and parity-odd
Copernican solutions belong to separate branches of the dy-
namics. Indeed, a Hamiltonian analysis revealed a different
structure of constraints and consequently a different number
of degrees of freedom. We are therefore talking about dif-
ferent phases of the same non-perturbative theory. The un-
derlying gauge symmetry associated with the new constraint
of the theory is a form of conformal invariance (generalized
for theories with torsion). Lambda appears to be pure gauge
with regards to this symmetry in the parity-even branch (in
the absence of matter). The parity-odd branch breaks confor-
mal invariance even in the absence of matter, giving a varying
Lambda a physical meaning. Non-conformal matter does the
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same in the parity-even branch, but then Lambda becomes a
slave to matter (much in the spirit of [24]). It is interesting
to note that the (odd parity) Pontryagin term is only relevant
for the homogeneous and isotropic dynamics in the parity-odd
branch of the solutions.

A preliminary investigation [15] revealed that phenomenol-
ogy in these theories (which, we stress, often have fewer free
parameters than General Relativity, and rarely can be made to
have more) shows a preference for the parity-odd branch in the
presence of Pontryagin dynamics. These considerations con-
cerned only the background solution, which is already very
rich in the parity-odd branch. The next obvious step is to in-
vestigate the propagation of gravitational waves in the same
branch. Such is the purpose of the current investigation.

The plan of this paper is as follows. In Section II we start
by reviewing previous results that will be needed in this paper,
translating them into the notation we found most useful for es-
tablishing a perturbation calculation. In Section III we set up
the tensor perturbation variables and work out the linearized
equations in various forms (tetrad index and space-time index
forms, and then decomposed in Fourier and helicity modes).
The equations in general look ominous: we have to contend
with first order equations in three variables – metric, and par-
ity even and odd components of the connection – but in sub-
section III we condense them in a more aesthetically pleasing
form, and lay out a strategy for their solution.

The rest of the paper is spent on working out solutions for
various parameter settings. In Section IV we briefly discuss
general properties of the perturbed equations. Next we discuss
a number of limiting cases of interest. As a sanity check we
find the General Relativity limit in Section V, with reassuring
results. In Section VI we consider the case where the dynam-
ics are ruled purely by an Euler pseudo-topological term. We
unveil our first surprise: the tensor mode perturbation is left

entirely undetermined by the equations of motion. This could
well signify that they have become a gauge degree of freedom
in this case.

The introduction of the Pontryagin term changes the pic-
ture. Physical propagating tensor modes now do exist, but
they are endowed with chiral modified dispersion relations.
We concentrate on two limiting forms - in Section VII the
propagation of gravitational waves in the late universe is dis-
cussed, whilst in Section VIII their propagation at earlier
stages when the evolution is dominated by matter and radi-
ation components is discussed. Finally in Section IX we sum-
marize our results and discuss prospects for further develop-
ment.

II. REVIEW OF PREVIOUS RESULTS

Here we shall review some results, adapting the notation in
previous literature to the notation that shall be more useful in
this paper. Specifically, we shall use the following conven-
tions for indices:

• A,B,C,D: SO(1, 3) gauge indices.

• I, J,K,L: SO(3) gauge indices.
• µ, ν, α, β: spacetime coordinate indices.

• t: time coordinate index.

• i, j, k, l,: spatial coordinate indices.

A. The full theory and its equations

The theories we analyze can be written as:

Sg[e, ω,Λ] = −
∫

3

2Λ

(
εABCD +

2

γ
ηACηBD

)(
RAB − Λ

3
eAeB

)(
RCD − Λ

3
eCeD

)
− 2

γ

∫
TATA. (1)

where RAB ≡ dωAB + ωACω
CB , TA ≡ deA + ωABe

B and
unless otherwise stated, multiplication of differential forms is
via the wedge product 2.The action can be rewritten as pro-
portional to four terms Sg = SPal + SEul + SNY + SPont,

2 If the parameter γ → ∞ and Λ is constrained to be a constant, the resulting
theory is the Einstein-Cartan theory alongside an Euler boundary term; the
particular coefficient of this boundary term has been found to be associated
with interesting properties of Noether charges in gravity [25, 26]

with

SPal =

∫
εABCD

(
eAeBRCD − Λ

6
eAeBeCeD

)
, (2)

SEul = −3

2

∫
1

Λ
εABCDR

ABRCD, (3)

SNY =
2

γ

∫
eAeBRAB − TATA, (4)

SPont = − 3

γ

∫
1

Λ
RABRAB . (5)

The first term is the Palatini action, though differs from that of
the Einstein-Cartan theory in that we allow Λ vary as a dynam-
ical field rather than fixing it to be a constant. The second term
is the quasi-Euler term of [1]. The third term is the Nieh-Yan
topological invariant (replacing the Holst term should there
be torsion). The last term is the quasi-Pontryagin term studied
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in [15]. We stress that the connection proposed here between
γ and the pre-factor of the quasi-Pontryagin term can be bro-
ken, and is not strictly needed. More generally, we could also
look at theories with arbitrary numerical factors in front of the
quasi-Euler and quasi-Pontryagin terms.

As usual, matter can be added to the gravitational action, to
yield a total action:

S =
1

2κ
Sg(e, ω,Λ) + SM (Φ, e, ω,Λ), (6)

where Φ denote matter fields. The full gravitational equations
of motion of this theory are then:

εABCD

(
eBRCD − 1

3
ΛeBeCeD

)
= −2κτA (7)

T [AeB] +
3

2Λ2
dΛRAB − 3

4γΛ2
εABCDdΛRCD = κSAB (8)

εABCD

(
RABRCD − 1

9
Λ2eAeBeCeD

)
+

2

γ
RABRAB = −2κJ (9)

where κ ≡ 8πG and we have defined energy momen-
tum 3-form τA = 1

2
δSM

δeA
, the spin-current 3-form SAB ≡

−(1/2)εABCDδSM/δω
CD and the Λ-source 4-form J ≡

(2/3)δS/δΛ. They are obtained by varying (1) together with
the action for matter with respect to e, ω and Λ, respectively.
A key property of these models is that Einstein’s equation
(7) takes the same form in the Einstein-Cartan formulation
of gravity (where Λ = cst.). Any dynamics for Λ will arise
from the gravitational field ωAB rather than via the addition
of explicit kinetic terms for Λ in the Lagrangian.

In this paper we will confine ourselves to situations where
the quantities SAB and J both are negligible. For standard
‘minimal’ coupling between fermions and the spin connec-
tion, the quantity SAB is sourced by the axial spinor current;
much of our focus will be on the behaviour of certain cosmo-
logical perturbations in ‘recent’ post-recombination cosmo-
logical history where this quantity is expected to be negligible
[3]. The assumption that J is negligible must be regarded as a
simplifying assumption and more detailed analysis is needed
to determine its expected coupling to matter. For the particu-
lar cosmological consequences of the theory examined in this
paper, it will suffice to that the matter content is describable
in terms of perfect fluids. By way of example, a perfect fluid
with density ρ, pressure p and four-velocity Uµ = eµAU

A will
have stress-energy 3-form:

τA = −1

6
(ρ+ p)UAεBCDEU

BeCeDeE − 1

6
pεABCDe

BeCeD

(10)

B. The background solution

We now look at the behaviour of the theory in situations
where spacetime has Friedmann-Robertson-Walker (FRW)
symmetry. This symmetry is widely considered to well ap-
proximate the geometry of the universe on large scales and
there exist strong constraints on the evolution of the universe

within this framework. We will henceforth refer to possi-
ble solutions with this symmetry as ‘background’ solutions
as later we will consider the behaviour of small perturbations
around them. It is important then to demonstrate that the com-
bined action (6) yields solutions that are consistent with these
constraints.

We shall denote all background quantities by a bar over the
respective variable. For simplicity we assume that the back-
ground spatial curvature is zero, so that we can use Cartesian
coordinates with

ē0 = N(t)dt (11)
ēI = a(t)δIi dx

i (12)

where N(t) is the lapse function (N = 1 for proper time)
and a(t) is the expansion factor. Note that ēIi = aδIi and
ēiI = a−1δiI . Then, the spin connection will be given by:

ω̄0I = g(t)a(t)δIi dx
i (13)

ω̄IJ = −P (t)a(t)εIJKδ
K
k dx

k (14)

where g and P are its parity even and odd components, re-
spectively. A connection of the form (14) was considered by
Cartan as an extension to Riemannian geometry, with parallel
transport according to this connection yielding a rotation of
vectors with a ‘handedness’ dictated by the sign of P . This
effect has been termed Cartan’s spiral staircase and we will
see that all parity violating effects in this gravitational model
appear only when P 6= 0. The torsion associated with (13)
and (14) is given by:

T̄ 0 = 0 (15)
T̄ I = T ēI ē0 + PεIJK ēJ ēK (16)

with the parity even component T related to g by:

T =

(
g − 1

N

ȧ

a

)
. (17)
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The field strength is:

R̄0I =
1

N

(
ġ +

ȧ

a
g

)
ē0ēI + gPεIJK ēJ ēK (18)

R̄IJ =
1

N

(
Ṗ + P

ȧ

a

)
εIJK ē

K ē0 +
(
g2 − P 2

)
ēI ēJ .(19)

It can be shown that with this “Copernican” ansatz, equa-
tions (7) to (9) become:

g2 − P 2 =
Λ + κρ

3
(20)

(ag).

a
=

Λ

3
− κ

6
(ρ+ 3p) (21)

T =
Λ̇

2Λ2

(
Λ + κρ− 6

γ
gP

)
(22)

P =
3Λ̇

Λ2

(
gP +

Λ + κρ

6γ

)
(23)

(Λ + κρ)
(

Λ− κ

2
(ρ+ 3p)

)
− Λ2 = 18gP

(aP ).

a
+

9

γ

(
Λ + κρ

3

(aP ).

a
+

2

3

(
Λ− κρ+ 3p

2

)
gP

)
(24)

As shown in Appendix A, this system can be cast in the form
of a first-order system of evolution equations for {a, g,Λ, P}
plus a constraint (the Hamiltonian constraint/Friedmann’s
equation). Reference to these background equations will be
made at several points in this paper, to simplify the perturba-
tion equations.

C. Background evolution

We now discuss solutions to equations (20)-(24) with an
emphasis on solutions that appear likely to be most consis-
tent with the observed expansion history of the universe. Care
must be taken here as many probes of background quantities
are additionally sensitive to details of cosmological perturba-
tions. For example, the position of the first peak of tempera-
ture anisotropies in the cosmic microwave background (CMB)
is sensitive to both the distance to last scattering (a back-
ground quantity) and the sound horizon at last scattering (a
quantity which additionally depends on the form of equations
describing cosmological perturbations) [27].

The system of equations (20)-(24) is rather complicated and
must be solved numerically. However, relevant approximate
solutions do exist, which we will now discuss.

1. Early times

There is strong evidence that the universe has under-
gone an early period (‘the radiation era’) where relativistic
species (such as photons and relativistic neutrinos) dominate
the evolution of the universe for a time before the universe
cools down enough such that the gravitational effect of near-
pressureless/dustlike matter (baryons and dark matter) domi-
nates (‘the matter era’), before eventually a new source of en-

ergy - typically termed dark energy - begins to dominate and
cause the expansion of the universe to accelerate [28]. We
will look to see whether the theory (6) permits this kind of
cosmological history, whilst ascribing the recent cosmologi-
cal acceleration to - now dynamical - Λ. An important part of
this is that the gravitational effect of new degrees of freedom
quantities such as Λ and the torsion P do not contradict the
above picture.

It can be shown that when |γ| � 1, to first order in γ there
exists a solution for the field P in the limit Λ→ 0

P = P(ρ) =
γ

3

√
κρ

3
(25)

We see then that when this solution holds, the torsion field P
is proportional to γ and so a smaller value of γ suppresses
torsion in the cosmological background. Neglecting the con-
tribution of Λ is expected to be a good approximation in the
earlier universe where the ‘dark energy’ is a sub-dominant
contributor to the universe’s expansion. When (25) holds it
may be shown that the Friedmann equation can be recovered
in approximation:

3

(
ȧ

a

)2

=

(
1− γ2

9

)
κρ+O(γ3) (26)

where we have adopted the N = 1 spacetime gauge. Hence
the solution (25) acts to rescale the bare Newton’s constant G
during times when the effect of Λ is negligible. The degree
to which this effect is observable depends on how the value
of Newton’s constant GN measured in tabletop experiments
is related to G. If G 6= GN , then the rate of expansion ȧ/a
due to a given ρwill be different from as is the case in General
Relativity and so in principle γ could be constrained by probes
of the expansion rate during big bang nucleosynthesis [29].
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However, importantly, the solution (25) is not stable. By
way of illustration, we may consider the evolution of small,
homogeneous perturbations P = P(ρ)(1 + δP (t)). It can be
shown that deep in the radiation era where κρ/3 ∼ H2

0 Ωr/a
4

- where H0 is the Hubble constant today - that

P(ρ) =
γ

3a2
H0

√
Ωr (27)

δP = Ca3 (28)

Therefore δP grows as a increases. By way of example, if
δP � 1 at a ∼ 10−15 then for it to remain smaller than unity
at a ∼ 10−5 we must have δP (a = 10−15) < 10−30. This
indicates that significant fine-tuning of initial data is required
for the spiral staircase field P to find itself following the solu-
tion (25).

If P deviates considerably from the tracking solution, the
tendency is for P to evolve to dominate the evolution of the
universe. In this case it may be shown that P = P0/a where
P0 is a constant and a ∼ (1+γ)(t−t0) - here the evolution of
the universe due to P resembles a General-Relativistic empty
universe with negative spatial curvature. It is hard to see how
such a universe could be consistent with experiment. This is
the case even if P is initially negligible. Therefore, the phe-
nomenological viability of the model rests on P being able to
initially find itself sufficiently close to the form (25) to avoid
dominating the evolution of the universe.

2. Late times

During late time cosmological evolution for realistic cos-
mologies we expect that universe to begin accelerating and
we look to ascribe this to Λ and P beginning to dominate cos-
mic evolution. Again assuming |γ| � 1 and now assuming
P 2 � Λ and taking the limit ρ → 0 we have the following
evolution equations for Λ and P :

dP

d ln a
= −3P,

dΛ

d ln a
= 2
√

3γP
√

Λ (29)

which possess solutions

P =
Pi
a3

(30)

Λ = Λ0 −
2γ√
3a3

Pi
√

Λ0 (31)

So, asymptotically for large a, Λ → Λ0 and P → 0, lead-
ing to a confluence with the current standard cosmological
picture of the late-time universe’s evolution being dominated
by a cosmological constant of magnitude Λ0. The contribu-
tion of P to the Hamiltonian constraint goes as ∼ P 2 so we
see that in this regime P evolves like a shear component, its
energy density diluting as a−6. For realistic cosmologies a
typical value for Pi will be given by its value when Λ be-
gins to dominate the evolution of the universe at a scale factor

10 5 10 3 10 1 101 103

0

1

2

1e 9+2

10 10
10 5
100
105

1010

P

10 5 10 3 10 1 101 103

a

0.0
0.2
0.4
0.6
0.8
1.0

r

d

FIG. 1. The numerical evolution of various quantities for the pa-
rameter choice γ = 10−5. In the upper plot the evolution of Λ is
shown; it can be seen that the field changes by roughly one part in
109 over cosmic history. In the middle plot the solid line shows the
exact evolution of the torsion field P whilst dashed line shows the
solution (25) and the dotted line shows the solution (30). The lower
plot shows evolution of Ω quantities (here defined as fractional con-
tributions to g2 in the Hamiltonian constraint) and P (solid lines) as
a function of ln a for a realistic universe. Subscripts d and r denote
dust and radiation-like components of the universe. The scale fac-
tor is fixed to be a = 1 at the present moment, and units where the
present day Hubble parameter H0 is set to unity are used.

a ∼ ai following a period of matter domination during which
P ∼ (γ/3)H0a

−3/2
i (from the solution (25)). We expect then

Pi ∼ (γ/3)H0a
3/2
i . This has important implications: if phe-

nomenologically viable cosmologies involve P staying on the
tracking solution (25) for an appreciable amount of time, this
means that fixing γ fixes the size of P during matter domina-
tion, and the size of Pi as the cosmological constant begins to
dominate.

We now discuss the evolution of Λ. It can be seen from
(25) that the tracking solution can exist if sign(P ) = sign(γ).
Recall that the Λ equation of motion is Λ̇ = 2γΛ2P/(6γgP +
Λ + κρ) and therefore in the earlier universe if κρ is initially
greater than Λ it will tend to suppress time variation of Λ.
Furthermore, we will have Λ̇ > 0 throughout, meaning that Λ
must be of smaller magnitude in the past than today. A typical
evolution of Λ and P are shown in Figure 1.

In summary then, numerical exploration suggests that un-
less P finds itself on the tracking solution (25) for much of
cosmic history, it will tend to dominate the evolution of the
universe and therefore very likely in conflict with cosmolog-
ical data. This requires fine tuning of the initial value of P
so that it begins close to the tracking solution. During the
tracking stage, the effect of P is to rescale Newton’s constant
G. We will find later that deviations of gravitational wave
speed from unity tend to be of order γ2. This justifies our
assumption that |γ| � 1 and - in conjunction with recent con-
straints on the speed of gravity - restricts the fractional rescal-
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ing ofG to beO(10−15), which is well within bounds that will
be placed by BBN constraints for the foreseeable future [29].
Additionally we see that a smaller value of γ tends to lower the
total time variation of Λ over cosmic history, making it more
difficult to distinguish from a genuine cosmological constant.

III. THE PERTURBED EQUATIONS OF MOTION FOR
TENSOR MODES

We now look at the evolution of small perturbations to the
cosmological background. We perturb the tetrad and connec-
tion as:

δe0 = 0 (32)

δeI =
1

2
HIJ ēJ (33)

δω0I =
1

2
EIJ ēJ (34)

δωIJ =
1

2
εIJKBKLēL (35)

where H[IJ] = E [IJ] = B[IJ] = 0 and HII = EII = BII =
0. In addition we apply the restriction of looking at tensor
(transverse traceless) modes, so that we impose:

D̄IHIJ = D̄IEIJ = D̄IBIJ = 0. (36)

where D̄I ≡ ēiID̄i and D̄i is the covariant derivative ac-
cording to ω̄IJi. Note the field P does not contribute to
the expressions (36) and so the equations are equivalent to
ēiI∂iHIJ = ēiI∂iEIJ = ēiI∂iBIJ = 0.

Given a quantity YIJ that represents a small perturbation,
it can be converted into a tensor Yij in the spatial coordinate
basis via Yij ≡ ēIi ē

J
j YIJ . Given our assumption of vanish-

ing spatial curvature, a ‘co-moving’ tensor Ỹij = Yij/a
2 can

further be constructed.
The linearly-perturbed form of equations (7)-(9) can be

written as linear partial differential equations in (t, xi) and
they are written in this form in Appendix C. For simplicity we
decompose these perturbations into plane-wave Fourier com-
ponents labelled by wave number k. As a further simplifi-
cation we decompose each co-moving tensor mode Fourier
mode into helicity eigenstates:

H̃ij =
∑
±
H±(k, t)eikix

i

P̃±ij (37)

Ẽij =
∑
±
E±(k, t)eikix

i

P̃±ij (38)

B̃ij =
∑
±
B±(k, t)eikix

i

P̃±ij . (39)

Here P̃±ij are co-moving polarization tensors for + and
− helicity components. For a plane-wave perturbation
with wavenumber ki we have the important identities,
ikmε̃ l

im P̃
±
lj = ±kP̃±ij and P̃λijP̃λ

′ij = 2δλλ
′

where λ =
+,− and ε̃ijk is the co-moving three dimensional Levi-Civita

symbol. Indices of co-moving tensors are taken to be raised
and lowered with the Kronecker delta symbol.

After some algebra, it can be shown that the spin connection
equations of motion yield the following equations:

(
B±
E±

)
=

1

A2 +B2

(
A B
−B A

)( −k±PH±

Ḣ± +

(
2 ȧa − g

)
H±

)
(40)

where here and subsequently we choose the spacetime gauge
N = 1 (proper time) and where

A =1− 3Λ̇

Λ2

(
g − k±P γ

−1

)
(41)

B =
3Λ̇

Λ2

(
k±P + gγ−1

)
(42)

We have introduced the polarization-dependent torsion-
adjusted proper wavenumber k±P according to:

k±P ≡ ±
k

a
− P (43)

For reference, in the usual Einstein-Cartan theory we have
A = 1,B = 0; in that case, B± is related to spatial derivatives
ofH± and E± is related to time variations ofH±. All modifi-
cations to the relation between {E±,B±} and H± stem from
non-constancy of Λ. Hence the connection equations imply
that in general the parity even and odd components of the con-
nection (E and B) can be obtained from their Einstein-Cartan
expressions via a rotation, with an angle θ satisfying:

tan θ =
B

A
=

3Λ̇
Λ2 (g + γk±P )γ−1

1− 3Λ̇
Λ2 (g − k±P γ−1)

(44)

followed by a dilatation by 1/
√
A2 +B2.

Then we may look to find the “second order” evolution
equation for H± by inserting the solution (40) for B± and
E± into the Einstein equation:

0 = Ė± +

(
ȧ

a
+ g

)
E± − k±P B

±

−
(

2

3
Λ +

κ

6
(ρ− 3p)

)
H± (45)

We now look at solutions to the system (40) and (45).

IV. GENERAL FEATURES

Generally, if the solution (40) is inserted into (45) then the
resulting coefficient of Ḧ± is proportional to:(

1 +
6P

Λ + κρ
k±P

)
. (46)
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We see that the coefficient is not positive-definite and hits zero
when k = k±∗ :

k±∗ = ∓ a

6P

(
Λ + κρ− 6P 2

)
(47)

signalling a divergence in the frequency. For example in the
very late universe we may expect Λ ∼ Λ0 = cst. to dominate
the evolution of the universe hence then:

k±∗ ∼ ∓
a

6P
Λ0 (48)

where we’ve assumed that P 2/Λ0 � 1.
Following the arguments proposed in Subsections II C 1

and II C 2, we have that k±∗ ∼ ∓2a4Λ0/γ for realistic cos-
mologies. Reaching k±∗ will correspond to ω2

±(k, t) and
f±(k, t) diverging and therefore likely signals a breakdown
in the applicability of linear perturbation theory. As for the
case of P (t), we see that a key parameter for the size of k±∗ is
γ.

When k 6= k±∗ and with the important exception of the limit
|γ| → ∞ (see Section VI), it is possible to write the Einstein
equation (45) in the following form :

Ḧ± = −ω2
±(k, t)H± − f±(k, t)Ḣ± (49)

For arbitrarily values of γ, the form of ω2
±(k, t) and f±(k, t)

will be extremely complicated and so we will concentrate in
detail on how (49) looks in relevant, limiting cases.

V. THE EINSTEIN-CARTAN LIMIT

We start by finding the Einstein-Cartan limit of these the-
ories, noting that when γ is finite and ρ = p = 0 there are
solutions where P = 0, g = ȧ/a and Λ is constant [15]. Tak-
ing these background solutions we should obtain the Einstein-
Cartan limit for our theory, which is equivalent to General
Relativity in this situation. Inserting these conditions into the
formalism just developed, we find Λ̇ = 0, and so A = 1 and
B = 0, as already announced in the previous Section. The
connection equations are therefore:

B± = −k±PH
± (50)

E± =

(
d

dt
+
ȧ

a

)
H±. (51)

Note that since P = 0 we have k±P = ±k/a, and so for grav-
ity waves in Einstein-Cartan theory, the parity-odd connection
perturbation, B, is a spatial gradient of the metric, whereas the
parity-even component, E , is a time derivative of the metric
(cf. Eqs (35) and (34)). Inserting these expressions into the
Einstein equation (45), as prescribed, we find:

Ḧ±+3
ȧ

a
Ḣ±+

(
ġ + 2g2 − 2

3
Λ

)
H±+(k±P )2H± = 0 (52)

where the dot denotes derivative with respect to the back-
ground proper time. In the Einstein-Cartan theory we have

T = 0 in the absence of background sources of torsion, so
g = ȧ/a, and the background equations of motion read (see
(20) and (21)):

g2 =
Λ

3
(53)

ġ +
ȧ

a
g = ġ + g2 =

Λ

3
. (54)

Therefore we find:

Ḧ± + 3
ȧ

a
Ḣ± = −(k±P )2H±

= −
(
k

a

)2

H± (55)

Thus, our formalism for gravity waves reduces to the textbook
equations for gravity waves in General Relativity in this limit.

VI. EULER THEORY (γ → ∞) IN A PARITY-ODD
BACKGROUND (P 6= 0)

Our first surprise arises when we consider a theory with the
Euler pseudo-topological term only, by letting γ → ∞, but
with a background with P 6= 0. Then, as the background
Equation (23) shows (with P 6= 0 and γ →∞), we must have
3Λ̇g = Λ2. Therefore, the definitions of A and B (Eqns. (41)
and (42)) lead to:

A = 0, B =
k±P
g

(56)

These are orthogonal to the Einstein-Cartan values, in the
sense that for the latter the matrix (40) is diagonal, whereas
here the matrix is purely off-diagonal. Indeed the rotation part
of the transformation is now θ = π/2. This is reflected in
the way the connection is related to the metric. the Einstein-
Cartan case (cf. Eqns. (50) and (51)) we have:

E± = gH± (57)

k±P B
± = g

(
Ḣ± +

(
2ȧ

a
− g
)
H±
)

(58)

Inserting into the Einstein equation (45) we find that not only
does this imply an absence of second order time derivatives
for H±, but the first time derivatives cancel out. In addition
the algebraic equation obtained is(

1

2
ġ + g2 − g

2

ȧ

a
− Λ

3
+

1

12
(3p− ρ)

)
H± = 0 (59)

The term in brackets in (59) vanishes due to the equations of
motion, therefore the tensor mode perturbation is H± com-
pletely undetermined by the perturbed equations of motion 3.

3 This would appear to contradict the result found in [30] which says that
tensor modes propagate luminally as in General Relativity in a model with
tensor mode perturbation equations that should be mappable to the ones
considered here.
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One may wonder to what extent this is a result of the partic-
ular choice for our action. For example, if the coefficient − 3

2

in the term (3) is replaced by − 3
2ξ then it can be shown that

Einstein’s equation instead becomes:

1

ξ

(
1− ξ

)(
4Λ + ρ− 3p

)
H± = 0 (60)

Thus in the case when Λ 6= 0, ρ 6= 3p and ξ 6= 1, the pertur-
bation H± is not undetermined but fixed to vanish. It appears
that the presence of the Euler term in the absence of the Pon-
tryagin term is sufficient to nullify the dynamics of the per-
turbation H± with the special case ξ = 1, which leaves them
undetermined by the perturbed equations of motion. Note that
the case of simultaneous vanishing of the Euler and Pontrya-

gin term (ξ → ∞) does not correspond to General Relativity.
In fact such limit yields a rather exotic background solution
a = 0 due to Λ being a dynamical field.

VII. THE LEADING ORDER SOLUTION FOR THE
GENERAL CASE IN THE LATE UNIVERSE

We now consider a general finite value of γ and look at
the perturbed equations in a regime where the evolution of
the universe is dominated by Λ. We define a dimensionless
parameter εP ≡ P/

√
Λ which is expected to be of magnitude

much smaller than unity in the late universe. Furthermore we
assume that |γ| � 1. Inserting the solutions for E± and B±
from (40) into the Einstein equations and keeping only terms
up to second order in {εP , γ} we find:

Ḧ± = −ω2
±(k, t)H± − f±(k, t)Ḣ± (61)

ω2
±(k, t) ≡

[
4Λε2P ∓ 4

√
ΛεP

(
k

a

)
+

(
1 +

(
κΛρ− 3κΛp− κ2ρ2 − 3κ2pρ

)
(κρ+ Λ)2

γ2

+
8
(√

3Λ5/2 +
√

3κΛ3/2ρ−
√

3κ2
√

Λρ2 − 3
√

3κ2
√

Λpρ− 3
√

3κΛ3/2p
)

(κρ+ Λ)5/2
γεP +

42
(
2Λ2 − κΛρ− 3κΛp

)
(κρ+ Λ)2

ε2P

)(
k

a

)2]
+O(εP , γ)3 (62)

f±(k, t) ≡
√

3(Λ + κρ)±
[4
√

3
√

Λ
√
κρ+ Λ(2Λ− κρ)εP + κρ(κρ− Λ)γ + 3κp

(
(κρ+ Λ)γ − 4

√
3
√

Λ
√
κρ+ ΛεP

)
(κρ+ Λ)2

](
k

a

)
+O(εP , γ)2 (63)

where it is assumed that |k| � k∗. Roughly speaking, posi-
tivity of both ω2

±(k, t) and f±(k, t) imply that H± evolves in
a stable manner.

We immediately see from (61) that novel features are gen-
erally present in the propagation of H±. In the limit k → 0
we see that

lim
k→0

ω2
±(k, t) = 4Λε2P ≡M2

G(P ) (64)

i.e. the non-Riemannian background curvature provided by
the spiral staircase field P gives what may be interpreted as
contributing to a non-zero effective mass to the graviton.

At non-zero k we see that there exist terms linear in k in
ω2
±(k, t) alongside the term proportional to k2 familiar from

General Relativity present in equation (55). We may consider
the wavenumber k(ω)12 at which the term linear in k is of com-
parable size to the term quadratic in k2. It can be calculated
to be, to leading order in small quantities:

k±(ω)12 ≡ ±4aεP
√

Λ = ±4aP (65)

For realistic background cosmologies we expect in this regime

that P ≈ (γ/3)H0a
3/2
i a−3 so k±(ω)12 ≈ ±4(γ/3)a

3/2
i a−2H0,

where ai will be the scale factor where Λ begins to dominate
the evolution of the universe. As |γ| � 1 then k±(ω)12 is ex-
pected to be on scales far larger than the characteristic cosmo-
logical horizon scale kH ≡ H0 today. We note that the mass
term and chirality-dependent leading term linear in k are due
to the tensor perturbationHij coupling to the parity-violating
torsionful generalization of the Laplacian operator.

Following [31] (see also [32–34]) the speed of monochro-
matic tensor modes today c±T (taking a = 1) is given by
c±T = ω±

k . In general our expression for cT will be rather
complicated but it is instructive to detail the order of mag-
nitude of terms appearing in its expressions. Given how we
expect P (t) to scale with γ from the results of Section II C 2
we find that:

c±T ∼ 1±O
(
H0

k
γ

)
+O

(
γ2

)
+O

(
H2

0

k2
γ2

)
±O

(
H3

0

k3
γ3

)
±O

(
k

k∗
γ2

)
+O

(
k2

k2
∗
γ2

)
+ . . . (66)

The above shows the leading contribution to each k depen-
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dence; these get further corrections by higher powers of γ as
appropriate. Note that the terms involving k∗, which are im-
portant in terms of telling us when breakdown happens for
higher k, appear at leading order cubic in {εP , γ} and that
the next-to-leading contribution to c±T involving k∗ is a factor
(k/k∗) smaller than the leading one, implying that the lead-
ing term is the dominant one as long as |k/k∗| � 1. Con-
straints from the LIGO experiment roughly constrain the de-
viation of c±T from unity by approximately 10−15. This will
generally imply that each of the terms in (66) that cause de-
viations from unity should be no bigger than 10−15. If we
take a typical wavelength of gravitational waves probed by
LIGO to be λLIGO ∼ 1000km then kLIGO = 2π/λLIGO ∼
6×10−3km−1. Taking a valueH0 ∼ (2/3)10−23km−1 (cor-
responding to H0 ∼ 70km/s/Mpc) we have H0/kLIGO ∼
10−21. As we expect γ2 < 1, the leading H0/k chirality-
dependent modification ot the speed of gravity is not con-
strained by existing data. The constraint on the speed of grav-
itational wave speed then places the following restriction on
γ:

γ2 . O(10−15) (67)

Given this constraint and the small value of H0/kLIGO, the

remaining immediate constraint from c±T is that

|k±∗ | � O(kLIGO) (68)

which is necessary for the consistency of our use of the lin-
early perturbed equations of motion; as the breakdown of
the applicability of these equations is approached, significant
deviations of c±T from unity are expected. We can trans-
late this into a constraint on γ by assuming as above that
P ∼ (γ/3)H0a

3/2
i a−3 and so using equation 47 we have

k±∗ ∼ ∓H0/γ and so

|γ| � O(10−21) (69)

VIII. PERFECT FLUID DOMINATION

In this limit, we consider the evolution of perturbations on
a background where the evolution is dominated by a combi-
nation of perfect fluids. It was shown in II C that there exist
solutions where Λ ∼ 0 and P 2 = γ2κρ/27 with γ � 1 and
that these seem to be the solutions that yield a realistic cos-
mology. Assuming that these solutions hold then to quartic
order in the small parameter γ we have that:

Ḧ± = −ω2
±(k, t)H± − f±(k, t)Ḣ± (70)

ω2
±(k, t) ≡

[
4

27

(
1− 1

9
(1 + 3w)γ2

)
γ2κρ∓ 4

3

√
κρ

3
γ

(
k

a

)
+

(
1 +

1

9
(1 + 3w)γ2 +

12

243
(1 + 3w)γ4

)(
k

a

)2

∓ 2

9
(1 + 3w)

√
3

κρ
γ3

(
k

a

)3

+
20

27

(1 + 3w)

κρ
γ4

(
k

a

)4]
+O(γ5) (71)

f±(k, t) ≡
[√

3κρ

(
1− 1

18
γ2 +

217

1944
γ4 +

13

162
wγ4

)
∓ 1

9
(1 + 3w)

(
1 + 4γ2

)
γ

(
k

a

)
+ (1 + 3w)

√
3

κρ

2

9

(
1 +

16

9
γ2

)
γ2

(
k

a

)2

∓ 4

9

(1 + 3w)

κρ
γ3

(
k

a

)3

+
8

27
(1 + 3w)

√
3

(κρ)3/2
γ4

(
k

a

)4]
+O(γ5)

(72)

where w ≡ p/ρ. Note that as in the case of the late time
solution discussed in Section VII the leading term in ω2

± to
leading order in γ2 as k → 0 corresponds toM2

G = 4P 2, and
this term grows more quickly than (k/a)2 as the scale factor
a decreases. By numerical inspection, ω2

± to arbitrary order
in γ has a minimum during fluid domination (if a = 1 today)

a ∼
2
(
γ2H2

0 Ωd +
√
γ4H4

0 Ω2
d + 9γ2H2

0k
2Ωr

)
9k2

(73)

where k > 0 for the + polarization, and k < 0 for the− polar-
ization where we’ve defined Ωd and Ωr for dust and radiation
respectively via κρd/3 ≡ H2

0 Ωd/a
3 and κρr/3 ≡ H2

0 Ωr/a
4.

This behaviour can be seen for ω2
+ in Figure 2 and appears to

mark a brief transition between ω2
+ being dominated by the

mass term at earlier times and the more familiar (k/a)2 term
at later times. Indeed, one can see that generally the effective
mass term in (71) - proportional to ρ- grows more quickly than
(k/a)2 as a decreases so will tend to dominate at early times.

IX. OUTLOOK

In this paper we revisited models of the Universe where the
cosmological constant is allowed to vary as a result of a bal-
ancing torsion. Such theories potentially have fewer free pa-
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FIG. 2. Plot of the exact forms of ω2
+ and ω2

− (correct up to any order
in γ) and 4P 2 for the background cosmology depicted in Figure 1
and with k = 10−3H0, γ = 10−5. It can be seen that both ω2

+ and
ω2
− asymptote at early times to the 4P 2, whereas at later times each

evolves as (k/a)2.

rameters than General Relativity, but we need to consider par-
ity violating backgrounds so that they display acceptable late
time phenomenology even at the level of background cosmo-
logical evolution [15]. Going beyond the homogeneous and
isotropic approximation, the most obvious question concerns
the propagating modes of the theory, specifically gravitational
waves. We found that indeed dramatic results and severe con-
straints arise in this respect.

We developed the required perturbation theory within the
first order formulation, taking into account that the connec-
tion has parity-odd and -even components, with both poten-
tially receiving zeroth order terms. We also proposed a strat-
egy for solving the more involved equations one has to con-
tend with in this setting. We recovered the usual result for
gravity waves if we assume the Einstein-Cartan theory (or so-
lutions to our theory that reduce to it). For a theory with a
pure Euler term we found a remarkable result that the linearly
perturbed equations of motion leave the tensor perturbations
either entirely undetermined (or fixed to vanish, if the term
has a factor different from the one imposed by self-duality).
This may well be hinting at the fact that gravity waves become
‘pure gauge’ in this case (in analogy with what happens for a
varying Lambda in the parity even branch of the background
solutions).

In the more general case, with a Pontryagin-type quasi-
topological term, the situation is more promising. There are
exotic effects, but these need not contradict observations in
particular if we restrict ourselves to viable background solu-
tions that may be currently indistinguishable from the stan-
dard ΛCDM cosmological mode. At the level of perturba-
tions, results will necessarily differ from General Relativity
for some wavenumbers k, with the speed of tensor modes in
the late universe receiving large modifications as |k| ∼ γH0

(the scale of the graviton mass) and as |k| ∼ H0/γ (the scale

k∗ ∼ H0/γ where linear perturbation theory is expected to
break down in these models). As one approaches each of
these values, the speed of gravity is predicted to diverge sub-
stantially from unity in a chirality-dependent manner. All
these effects occur only when the parity-violating torsion field
P (t) 6= 0 and - via equation A3 - equivalently when the time
derivative of Λ(t) is non-zero.

Thus, our results are potentially very useful as a new model
relating observations on the accelerating Universe (possibly
implying of a non-constant deceleration parameter) and other
gravitational observations. But even more originally, our con-
clusions may be of great value for in phenomenological quan-
tum gravity. Modified dispersion relations are a major feature
of phenomenological approaches to quantum gravity (see, for
example, [35–38]). Our work has added a layer to this ap-
proach by introducing chiral modified dispersion relations. It
has been speculated that the concept of parity requires severe
revision at the Planck scale [39]. Furthermore, our results
supplement existing findings regarding how parity violation in
theories of gravity involving to extensions to Riemannian ge-
ometry can affect the propagation of gravitational waves (for
example see [30, 40] for cases where the gravitational connec-
tion field has torsion and non-metricity respectively).

A number of open questions remain. Firstly, we have only
considered tensor perturbations in this theory. It is expected
that in the vector mode sector, there will be no new degrees
of freedom present - as in the tensor mode case, a relic of the
polynomial nature of the new ΛRR terms in the Lagrangian
is that modifications will always only be enabled by a non-
zero time derivative of Λ(t) which concomitantly implies that
time derivatives of the spin-connection perturbation will not
appear. In the scalar sector, a new scalar degree of freedom
δΛ(xi, t) is expected to propagate and it will be important to
see its effect on the cosmic microwave background CMB) and
the growth of large scale structure.

There are also several avenues to study further observa-
tional signatures of this parity violation. The gravitational
wave waveform will show deviations from General Relativity
in both the amplitude and phase, due to amplitude and veloc-
ity birefringence effects, respectively, which both arise as a
result of parity violation [41, 42]. Some of these effects could
potentially be constrained in second generation gravitational
wave detectors, and it would be interesting to derive the mod-
ifications to the waveform due to these effects. In addition to
observable signatures in propagation, there is potential to de-
tect parity violation at the gravitational wave source through
study of various types of astrophysical binary systems as pro-
posed by [43, 44]. It has also been suggested that parity viola-
tion in the gravitational sector could leave distinct signatures
in the CMB to be detected with future experiments (see e.g.,
[45–51]), which could also be worth further exploration in the
context of our theory.

It remains to understand our results in the light of a Hamil-
tonian analysis of the theory to second order, or even non-
perturbatively, to all orders. A clear direction of further devel-
opment would be to present the Hamiltonian structure of the
full theory, with an examination of its number of degrees of
freedom. It is curious that the mini-superspace approximation
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reveals two branches with different symmetries and degrees of
freedom. We have now discovered that the fluctuations about
them have rather exotic properties. In particular, the under-
determination of the perturbed tensor equations of motion for
a theory with a pure Euler term hints that a novel type of gauge
symmetry may exist.
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Appendix A: Alternative form of the background equations of
motion

It is possible to write down the field equations (7)-(9) as a
system of first-order ordinary differential equations for vari-
ables {P, g,Λ, a} along with a constraint equation:

Ṗ =
−6Pκρ

(
6γPg2 + 3g

(
Λ + 2P 2

)
− ΛγP

)
+ κ2ρ(6P (3gp+ γPρ) + γΛκ(ρ− 3p))− γκ3ρ2(3p+ ρ)

6κρ(6γPg + Λκ+ ρ)
(A1)

ġ = −
6
(
γ2 + 1

)
g2P 2

6γPg + Λ + κρ
− g2 + gγP +

Λ

3
− κ

6
(ρ+ 3P ) (A2)

Λ̇ =
2γPΛ2

6γPg + Λ + κρ
(A3)

ȧ = a

(
6
(
γ2 + 1

)
gP 2

6γPg + Λ + κρ
+ g − γP

)
(A4)

Λ

3
= g2 − P 2 − κρ

3
(A5)

It can be checked via differentiation of the constraint equation
that ρ̇ = −3 ȧa (ρ + p) as in the case of a perfect fluid in Gen-
eral Relativity. Using the constraint equation we can rewrite
the evolution equation as Λ̇ = (2/3)γPΛ2/(g2−P 2+2gγP ).
From this perspective, the dynamics for Λ can be seen as aris-
ing from the spin connection components g and P .

Appendix B: Linearly perturbed field strength and torsion

Central objects in the field equations (7)-(9) are the cur-
vature and torsion two-forms RAB and TA. Their linearly-
perturbed forms around the cosmological background are
found to be:

δR0I = −εIJKgBJLēLēK +

(
1

N

∂

∂t
EIJ +

1

N

ȧ

a
EIJ

)
ē0ēJ

+ D̄KEIJ ēK ēJ + PEIJεJKLēK ēL (B1)

δRIJ = 2gE [I
L ē|L|ēJ] + εIJK

((
1

N

∂

∂t
BKL +

1

N

ȧ

a
BKL

)
ē0ēL

+ (D̄LBKM )ēLēM + PBKP εPMN ēM ēN

)
(B2)

δT I =

(
1

N

∂

∂t
HIM +

1

N

ȧ

a
HIM − EIM

)
ē0ēM

+
(
D̄LHIJ + PHIKεKLJ + εIJKBKL

)
ēLēJ (B3)

where D̄I ≡ eiID̄i where D̄i is the covariant derivative ac-
cording to ω̄IJ .

Appendix C: Perturbed equations of motion

For completeness we provide the full form of the perturbed
equations of motion for the fields {HIJ ,BIJ , EIJ}:
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−
(
D̄KHIM ε J

KM + 2PHIJ

)
−
(

Λ + 12P 2

Λ + 6gγP

)
BIJ = − 3

Λ2
Λ̇

(
D̄KEIM ε J

KM + 2PEIJ
)
− 3

Λ2γ
Λ̇

(
gEIJ − D̄KBIM εKMJ

)
(C1)

−
(
∂

∂t
HIJ +

(
2
ȧ

a
− g
)
HIJ

)
+

(
Λ + 12P 2

Λ + 6gγP

)
EIJ = − 3

Λ2
Λ̇

(
D̄KBIM ε J

KM + 2PBIJ
)
− 3

Λ2γ
Λ̇

(
gBIJ + D̄KEIM εKMJ

)
(C2)

∂

∂t
EIJ +

(
ȧ

a
+ g

)
EIJ =

2

3
ΛHIJ + D̄KB(I

Lε
J)KL + 2PBIJ +

(
2

3
Λ +

κ

6

(
ρ− 3p

))
HIJ

(C3)

where εIJK is the three-dimensional Levi-Civita symbol and we have chosen the N = 1 spacetime gauge.
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