1,997 research outputs found

    Water wave animation via wavefront parameter interpolation

    Get PDF
    We present an efficient wavefront tracking algorithm for animating bodies of water that interact with their environment. Our contributions include: a novel wavefront tracking technique that enables dispersion, refraction, reflection, and diffraction in the same simulation; a unique multivalued function interpolation method that enables our simulations to elegantly sidestep the Nyquist limit; a dispersion approximation for efficiently amplifying the number of simulated waves by several orders of magnitude; and additional extensions that allow for time-dependent effects and interactive artistic editing of the resulting animation. Our contributions combine to give us multitudes more wave details than similar algorithms, while maintaining high frame rates and allowing close camera zooms

    Маркшейдерське забезпечення робіт при створенні програмного модуля розкритих, підготовлених і готових до видобування балансово-промислових запасів

    Get PDF
    Розглянуто і досліджено методи визначення і нормування балансово-промислових запасів за ступенем підготовленості до видобування, які призначені для залізорудних корисних копалин і вугілля. Для багатьох видів твердих корисних копалин такі методи не розроблені. Встановлено, що кожний із видів мінеральної сировини має особливості природно-просторового розміщення у надрах, гірничо-технологічні стадії видобутку і переробки, які враховують при підземному способі видобутку, методи визначення стану і рухомості, обліку і нормування підготовленості балансово-промислових запасів за програмним модулем

    Effects of Lifshitz Transition on Charge Transport in Magnetic Phases of Fe-Based Superconductors

    Full text link
    The unusual temperature dependence of the resistivity and its in-plane anisotropy observed in the Fe-based superconducting materials, particularly Ba(Fe1x_{1-x}Cox_x)2_2As2_2, has been a longstanding puzzle. Here we consider the effect of impurity scattering on the temperature dependence of the average resistivity within a simple two-band model of a dirty spin density wave metal. The sharp drop in resistivity below the N\'eel temperature TNT_N in the parent compound can only be understood in terms of a Lifshitz transition following Fermi surface reconstruction upon magnetic ordering. We show that the observed resistivity anisotropy in this phase, arising from nematic defect structures, is affected by the Lifshitz transition as well.Comment: 8 pages, 5 figure

    Signatures of a gearwheel quantum spin liquid in a spin-12\frac{1}{2} pyrochlore molybdate Heisenberg antiferromagnet

    Get PDF
    We theoretically investigate the low-temperature phase of the recently synthesized Lu2_2Mo2_2O5_5N2_2 material, an extraordinarily rare realization of a S=1/2S=1/2 three-dimensional pyrochlore Heisenberg antiferromagnet in which Mo5+^{5+} are the S=1/2S=1/2 magnetic species. Despite a Curie-Weiss temperature (ΘCW\Theta_{\rm CW}) of 121(1)-121(1) K, experiments have found no signature of magnetic ordering oror spin freezing down to T0.5T^*\approx0.5 K. Using density functional theory, we find that the compound is well described by a Heisenberg model with exchange parameters up to third nearest neighbors. The analysis of this model via the pseudofermion functional renormalization group method reveals paramagnetic behavior down to a temperature of at least T=ΘCW/100T=|\Theta_{\rm CW}|/100, in agreement with the experimental findings hinting at a possible three-dimensional quantum spin liquid. The spin susceptibility profile in reciprocal space shows momentum-dependent features forming a "gearwheel" pattern, characterizing what may be viewed as a molten version of a chiral noncoplanar incommensurate spiral order under the action of quantum fluctuations. Our calculated reciprocal space susceptibility maps provide benchmarks for future neutron scattering experiments on single crystals of Lu2_2Mo2_2O5_5N2_2.Comment: Published version. Main paper (6 pages, 3 figures) + Supplemental Material (4 pages, 3 figures, 1 table

    Flexible auditory training, psychophysics, and enrichment of common marmosets with an automated, touchscreen-based system

    Get PDF
    Devising new and more efficient protocols to analyze the phenotypes of non-human primates, as well as their complex nervous systems, is rapidly becoming of paramount importance. This is because with genome-editing techniques, recently adopted to non-human primates, new animal models for fundamental and translational research have been established. One aspect in particular, namely cognitive hearing, has been difficult to assess compared to visual cognition. To address this, we devised autonomous, standardized, and unsupervised training and testing of auditory capabilities of common marmosets with a cage-based standalone, wireless system. All marmosets tested voluntarily operated the device on a daily basis and went from naïve to experienced at their own pace and with ease. Through a series of experiments, here we show, that animals autonomously learn to associate sounds with images; to flexibly discriminate sounds, and to detect sounds of varying loudness. The developed platform and training principles combine in-cage training of common marmosets for cognitive and psychoacoustic assessment with an enriched environment that does not rely on dietary restriction or social separation, in compliance with the 3Rs principle

    J\mathbf{J} freezing and Hund’s rules in spin-orbit-coupled multiorbital Hubbard models

    Get PDF
    We investigate the phase diagram of the spin-orbit-coupled three orbital Hubbard model at arbitrary filling by means of dynamical mean-field theory combined with the continuous-time quantum Monte Carlo method. We find that the spin-freezing crossover occurring in the metallic phase of the nonrelativistic multiorbital Hubbard model can be generalized to a J-freezing crossover, with J=L+S, in the spin-orbit- coupled case. In the J-frozen regime the correlated electrons exhibit a nontrivial flavor selectivity and energy dependence. Furthermore, in the regions near n=2 and n=4 the metallic states are qualitatively different from each other, which reflects the atomic Hund’s third rule. Finally, we explore the appearance of magnetic order from exciton condensation at n=4 and discuss the relevance of our results for real materials

    A valence bond liquid on the honeycomb lattice

    Full text link
    The honeycomb lattice material Li2RuO3 undergoes a dimerization of Ru4+ cations on cooling below 270C, where the magnetic susceptibility vanishes. We use density functional theory calculations to show that this reflects the formation of a 'valence bond crystal', with a strong bond disproportionation. On warming, x-ray diffraction shows that discrete three-fold symmetry is regained on average, and the dimerization apparently disappears. In contrast, local structural measurements using high-energy x-rays, show that disordered dimers survive at the nanoscale up to at least 650C. The high temperature phase of Li2RuO3 is thus an example of a valence bond liquid, where thermal fluctuations drive resonance between different dimer coverages, a classic analogue of the resonating valence bond state often discussed in connection with high Tc_c cuprates.Comment: 5 pages, 4 figures, References correcte
    corecore