668 research outputs found

    A study of mental statistics

    Get PDF

    Community and association of ideas: A statistical study

    No full text
    The application of statistics to the study of mental phenomena promises to supply the data for new and suggestive generalizations, as well as to corroborate, often in an unexpected manner, the laws of mind derived from off-hand observation. The census and newspaper statistics on matters large and small have familiarized us with the notion that facts which separately may have but little importance, when considered in groups give rise to significant truths. In the hope of contributing to our knowledge of the nature and regularity of such mental processes, I have upon various occasions requested a class of students to serve as the subjects of experiment. In the test here to be described a word was written upon the blackboard and, by the withdrawal of a screen was shown to the whole class at the same moment; each, student thereupon wrote as rapidly as possible the five words first suggested to him by the word upon the board. In this way five associations were obtained from each student to each of the following ten words: book, man, tree, cat, hand, hat, bread, pen, write, blue. By counting separately for each of the five associations how often different students have written the same word we may determine the degree of similarity of their associations, and further how this community of ideas varies as the associations recede from their common starting-poin

    Test of a Jastrow-type wavefunction for a trapped few-body system in one dimension

    Full text link
    For a system with interacting quantum mechanical particles in a one-dimensional harmonic oscillator, a trial wavefunction with simple structure based on the solution of the corresponding two-particle system is suggested and tested numerically. With the inclusion of a scaling parameter for the distance between particles, at least for the very small systems tested here the ansatz gives a very good estimate of the ground state energy, with the error being of the order of ~1% of the gap to the first excited state

    Genotypic diversity effects on biomass production in native perennial bioenergy cropping systems

    Get PDF
    Citation: Morris, G. P., Hu, Z., Grabowski, P. P., Borevitz, J. O., de Graaff, M. A., Miller, R. M., & Jastrow, J. D. (2016). Genotypic diversity effects on biomass production in native perennial bioenergy cropping systems. GCB Bioenergy. doi:10.1111/gcbb.12309Article: Version of RecordThe perennial grass species that are being developed as biomass feedstock crops harbor extensive genotypic diversity, but the effects of this diversity on biomass production are not well understood. We investigated the effects of genotypic diversity in switchgrass (Panicum virgatum) and big bluestem (Andropogon gerardii) on perennial biomass cropping systems in two experiments conducted over 2008-2014 at a 5.4-ha fertile field site in northeastern Illinois, USA. We varied levels of switchgrass and big bluestem genotypic diversity using various local and nonlocal cultivars - under low or high species diversity, with or without nitrogen inputs - and quantified establishment, biomass yield, and biomass composition. In one experiment ('agronomic trial'), we compared three switchgrass cultivars in monoculture to a switchgrass cultivar mixture and three different species mixtures, with or without N fertilization. In another experiment ('diversity gradient'), we varied diversity levels in switchgrass and big bluestem (1, 2, 4, or 6 cultivars per plot), with one or two species per plot. In both experiments, cultivar mixtures produced yields equivalent to or greater than the best cultivars. In the agronomic trial, the three switchgrass mixture showed the highest production overall, though not significantly different than best cultivar monoculture. In the diversity gradient, genotypic mixtures had one-third higher biomass production than the average monoculture, and none of the monocultures were significantly higher yielding than the average mixture. Year-to-year variation in yields was lowest in the three-cultivar switchgrass mixtures and Cave-In-Rock (the southern Illinois cultivar) and also reduced in the mixture of switchgrass and big bluestem relative to the species monocultures. The effects of genotypic diversity on biomass composition were modest relative to the differences among species and genotypes. Our findings suggest that local genotypes can be included in biomass cropping systems without compromising yields and that genotypic mixtures could help provide high, stable yields of high-quality biomass feedstocks. © 2015 John Wiley & Sons Ltd

    A unitary correlation operator method

    Get PDF
    The short range repulsion between nucleons is treated by a unitary correlation operator which shifts the nucleons away from each other whenever their uncorrelated positions are within the replusive core. By formulating the correlation as a transformation of the relative distance between particle pairs, general analytic expressions for the correlated wave functions and correlated operators are given. The decomposition of correlated operators into irreducible n-body operators is discussed. The one- and two-body-irreducible parts are worked out explicitly and the contribution of three-body correlations is estimated to check convergence. Ground state energies of nuclei up to mass number A=48 are calculated with a spin-isospin-dependent potential and single Slater determinants as uncorrelated states. They show that the deduced energy- and mass-number-independent correlated two-body Hamiltonian reproduces all "exact" many-body calculations surprisingly well.Comment: 43 pages, several postscript figures, uses 'epsfig.cls'. Submitted to Nucl. Phys. A. More information available at http://www.gsi.de/~fm

    Root Traits of Perennial C\u3csub\u3e4\u3c/sub\u3e Grasses Contribute to Cultivar Variations in Soil Chemistry and Species Patterns in Particulate and Mineral-Associated Carbon Pool Formation

    Get PDF
    Recent studies have indicated that the C4 perennial bioenergy crops switchgrass (Panicum virgatum) and big bluestem (Andropogon gerardii) accumulate significant amounts of soil carbon (C) owing to their extensive root systems. Soil C accumulation is likely driven by inter- and intraspecific variability in plant traits, but the mechanisms that underpin this variability remain unresolved. In this study we evaluated how inter- and intraspecific variation in root traits of cultivars from switchgrass (Cave-in-Rock, Kanlow, Southlow) and big bluestem (Bonanza, Southlow, Suther) affected the associations of soil C accumulation across soil fractions using stable isotope techniques. Our experimental field site was established in June 2008 at Fermilab in Batavia, IL. In 2018, soil cores were collected (30 cm depth) from all cultivars. We measured root biomass, root diameter, specific root length, bulk soil C, C associated with coarse particulate organic matter (CPOM) and fine particulate organic matter plus silt- and clay-sized fractions, and characterized organic matter chemical class composition in soil using high-resolution Fourier-transform ion cyclotron resonance mass spectrometry. C4 species were established on soils that supported C3 grassland for 36 years before planting, which allowed us to use differences in the natural abundance of stable C isotopes to quantify C4 plant-derived C. We found that big bluestem had 36.9% higher C4 plant-derived C compared to switchgrass in the CPOM fraction in the 0–10 cm depth, while switchgrass had 60.7% higher C4 plant-derived C compared to big bluestem in the clay fraction in the 10–20 cm depth. Our findings suggest that the large root system in big bluestem helps increase POM-C formation quickly, while switchgrass root structure and chemistry build a mineral-bound clay C pool through time. Thus, both species and cultivar selection can help improve bioenergy management to maximize soil carbon gains and lower CO2 emissions

    Short-range correlations in low-lying nuclear excited states

    Get PDF
    The electromagnetic transitions to various low-lying excited states of 16O, 48Ca and 208Pb are calculated within a model which considers the short-range correlations. In general the effects of the correlations are small and do not explain the required quenching to describe the data.Comment: 6 pages, 2 postscript figures, 1 tabl

    Cold Bose gases with large scattering lengths

    Full text link
    We calculate the energy and condensate fraction for a dense system of bosons interacting through an attractive short range interaction with positive s-wave scattering length aa. At high densities, n>>a−3n>>a^{-3}, the energy per particle, chemical potential, and square of the sound speed are independent of the scattering length and proportional to n2/3n^{2/3}, as in Fermi systems.Comment: 4 pages, 3 figure

    Effects of state dependent correlations on nucleon density and momentum distributions

    Full text link
    The proton momentum and density distributions of closed shell nuclei are calculated within a model treating short--range correlations up to first order in the cluster expansion. The validity of the model is verified by comparing the results obtained with purely scalar correlations with those produced by finite nuclei Fermi Hypernetted Chain calculations. State dependent correlations are used to calculate momentum and density distributions of 12C, 16O, 40Ca, and 48Ca, and the effects of their tensor components are studied.Comment: 16 pages, latex, 8 figures, accepted for publication in Phys. Rev.
    • …
    corecore