35 research outputs found

    Mercury DPM: fast, flexible particle simulations in complex geometries part II: applications

    Get PDF
    MercuryDPM is a particle-simulation software developed open-source by a global network of researchers. It was designed ​ab initio to simulate realistic geometries and materials, thus it contains several unique features not found in any other particle simulation software. These features have been discussed in a companion paper published in the DEM7 conference proceedings; here we present several challenging setups implemented in MercuryDPM ​ . Via these setups, we demonstrate the unique capability of the code to simulate and analyse highly complex geotechnical and industrial applications.These tups implemented include complex geometries such as (i) a screw conveyor, (ii) steady-state inflow conditions for chute flows, (iii) a confined conveyor belt to simulate a steady-state breaking wave, and(iii)aquasi-2D cylindrical slice to efficiently study shear flows.​MercuryDPM is also parallel, which we showcase via a multi-million particle simulations of a rotating drum. We further demonstrate how to simulate complex particle interactions, including: (i)deformable, charged clay particles; and (ii) liquid bridges and liquid migration in wet particulates, (iii) non-spherical particles implemented via superquadrics. Finally, we show how to analyse and complex systems using the unique micro-macro mapping (coarse-graining) tool MercuryCG

    Cancer immune therapy using engineered ‛tail-flipping’ nanoliposomes targeting alternatively activated macrophages

    Get PDF
    Alternatively-activated, M2-like tumor-associated macrophages (TAM) strongly contribute to tumor growth, invasiveness and metastasis. Technologies to disable the pro-tumorigenic function of these TAMs are of high interest to immunotherapy research. Here we show that by designing engineered nanoliposomes bio-mimicking peroxidated phospholipids that are recognised and internalised by scavenger receptors, TAMs can be targeted. Incorporation of phospholipids possessing a terminal carboxylate group at the sn-2 position into nanoliposome bilayers drives their uptake by M2 macrophages with high specificity. Molecular dynamics simulation of the lipid bilayer predicts flipping of the sn-2 tail towards the aqueous phase, while molecular docking data indicates interaction of the tail with Scavenger Receptor Class B type 1 (SR-B1). In vivo, the engineered nanoliposomes are distributed specifically to M2-like macrophages and, upon delivery of the STAT6 inhibitor (AS1517499), zoledronic acid or muramyl tripeptide, these cells promote reduction of the premetastatic niche and/or tumor growth. Altogether, we demonstrate the efficiency and versatility of our engineered “tail-flipping” nanoliposomes in a pre-clinical model, which paves the way to their development as cancer immunotherapeutics in humans

    Common variation in PHACTR1 is associated with susceptibility to cervical artery dissection

    Get PDF
    Cervical artery dissection (CeAD), a mural hematoma in a carotid or vertebral artery, is a major cause of ischemic stroke in young adults although relatively uncommon in the general population (incidence of 2.6/100,000 per year). Minor cervical traumas, infection, migraine and hypertension are putative risk factors, and inverse associations with obesity and hypercholesterolemia are described. No confirmed genetic susceptibility factors have been identified using candidate gene approaches. We performed genome-wide association studies (GWAS) in 1,393 CeAD cases and 14,416 controls. The rs9349379[G] allele (PHACTR1) was associated with lower CeAD risk (odds ratio (OR) = 0.75, 95% confidence interval (CI) = 0.69-0.82; P = 4.46 × 10(-10)), with confirmation in independent follow-up samples (659 CeAD cases and 2,648 controls; P = 3.91 × 10(-3); combined P = 1.00 × 10(-11)). The rs9349379[G] allele was previously shown to be associated with lower risk of migraine and increased risk of myocardial infarction. Deciphering the mechanisms underlying this pleiotropy might provide important information on the biological underpinnings of these disabling conditions

    Cohesion-driven mixing and segregation of dry granular media

    Get PDF
    Granular segregation is a common, yet still puzzling, phenomenon encountered in many natural and engineering processes. Here, we experimentally investigate the effect of particles cohesion on segregation in dry monodisperse and bidisperse systems using a rotating drum mixer. Chemical silanization, glass surface functionalization via a Silane coupling agent, is used to produce cohesive dry glass particles. The cohesive force between the particles is controlled by varying the reaction duration of the silanization process, and is measured using an in-house device specifically designed for this study. The effects of the cohesive force on flow and segregation are then explored and discussed. For monosized particulate systems, while cohesionless particles perfectly mix when tumbled, highly cohesive particles segregate. For bidisperse mixtures of particles, an adequate cohesion-tuning reduces segregation and enhances mixing. Based on these results, a simple scheme is proposed to describe the system's mixing behaviour with important implications for the control of segregation or mixing in particulate industrial processes.</p

    Molecular Analysis of the Mechanical Behavior of Plasticized Amorphous Polymer

    No full text
    Plasticization effects on the mechanical behavior were investigated on two families of materials based on poly(methyl methacrylate) (PMMA) and poly(vinyl chloride) (PVC), respectively. For this purpose, PMMA was blended with poly(vinylidene fluoride) (PVDF) by co-precipitation from solution, all over the PVDF range 0-40 wt% where the samples remain amorphous. Di-octylphtalate (DOP) was mechanically dispersed in PVC over the DOP range 0-20 wt%. The relaxation behavior of the samples was studied by differential scanning calorimetry at heating rate of 10 °C\cdot min-1 and by dynamic mechanical analysis at the frequency 1 Hz over the temperature range 100 -100~^{\circ}C/150 °C. Stress strain curves were recorded during compression testing at a deformation rate of 2.10-3 s-1. Data analysis was carried out on the molecular scale; it permitted to highlight the influence of the β elaxation motions on the plastic behavior. Consideration of the non elastic part of the energy to yield was clearly related to the contribution of α\alpha and β\beta motions

    untitled

    No full text
    Amorphous and Semicrystalline Blends of Poly(vinylidene fluoride) and Poly(methyl methacrylate): Characterization and Modeling of the Mechanical Behavior After extensive studies starting in the 1970s in relation to miscibility and piezoelectric properties, the blends of poly(vinylidene fluoride) (PVDF) and poly(methyl methacrylate) (PMMA) have been revisited with the aim of assessing their mechanical behavior. Depending on the amount of PVDF, either amorphous or semicrystalline blends are produced. Typically, the blends remain amorphous when their PVDF content does not exceed 40 wt. %. Blend composition influence on the values of the glass transition temperature, T g , and on its mechanical expression, T a , is extensively discussed. Then, emphasis is put on the stress-strain behavior in tension and compression over the low deformation range covering the elastic, anelastic, and viscoplastic response. The reported data depend, as expected, on temperature and strain rate and also, markedly, on blend composition and degree of crystallinity. Molecular arguments, based on the contribution of the glass transition motions are proposed to account for the observed behavior. Thanks to the understanding of phenomena at the molecular level, accurate models can be selected in the view of mechanical modeling

    Chitosan-Based Gastric Dressing Materials Loaded with Pomegranate Peel as Bioactive Agents: Pharmacokinetics and Effects on Experimentally Induced Gastric Ulcers in Rabbits

    No full text
    This study reported the fabrication and characterization of gastric dressing, composed of gelatine (GEL), chitosan (CH), and pomegranate peel (PP) extract. The structural changes occurring after &gamma;-irradiation of GEL&ndash;CH&ndash;PP dressing were reported. The results showed that the electron paramagnetic resonance (EPR) spectroscopy of un-irradiated GEL&ndash;CH&ndash;PP showed two paramagnetic centers, which corresponded to g = 2.19 and g = 2.002. After irradiation, a new active centre appeared at g = 2.0035 at 10 kGy. The Fourier transform infrared spectroscopy (FTIR) analyses revealed an increase in peak intensity at C&ndash;H chains, as well as the C=O carboxyl groups at 10 kGy, due to the cross-linking phenomenon. The X-ray diffraction analysis showed a low change of crystallinity between the range of 2&theta; (15&ndash;30&deg;). Moreover, &gamma;-rays enhanced scavenging DPPH radical activity (51&plusmn;%) and chelating power activities 79.12%. A significant inhibition of antibacterial and anti-biofilm activities (p &lt; 0.01) was noticed. The hemolysis rates showed 0.42%, suggesting a high hemocompatibility, and exhibited significant anti-inflammatory activity in vitro (48%). In vivo, the healing effects of GEL&ndash;CH&ndash;PP dressing showed that the incidence and severity of gastric histopathological lesions decreased, compared with the ulcerated group, which could explain the bioavailability and the pharmacokinetic findings. The results highlight the loading of bioactive agents into polymer-based gastric dressings, with promising pharmacokinetics properties and effects on the induced ulcera in rabbits
    corecore