9,447 research outputs found

    Ética ambiental y turismo: relación responsable hombre-naturaleza

    Get PDF
    La ética tiene que ver con la acción humana, con lo que es justo y bueno, porque la humanidad tiene la responsabilidad y la libertad para hacer cambios en las comunidades y en su entorno. Una de estas acciones es el uso y el trato que se le da a la naturaleza, si bien ha sido discutible si ésta tiene o no derechos equiparables a los del hombre. La ética ambiental reconoce que los animales y plantas pueden ser sujetos morales que requieren consideración a sus derechos. Relacionamos la ética ambiental con el turismo, pues éste usa el entorno natural como marco para la realización de actividades recreacionales de las personas; no obstante se ha evidenciado que existen impactos negativos ocasionados por un inadecuado uso de los recursos naturales, por lo que el papel de la ética ambiental debe promover una relación más armónica entre el hombre y la naturaleza

    Transfer learning or design a custom CNN for tactile object recognition

    Get PDF
    International Workshop on Robotac: New Progress in Tactile Perception and Learning in RoboticsNovel tactile sensors allow treating pressure lectures as standard images due to its highresolution. Therefore, computer vision algorithms such as Convolutional Neural Networks (CNNs) can be used to identify objects in contact. In this work, a high-resolution tactile sensor has been attached to a robotic end-effector to identify objects in contact. Moreover, two CNNs-based approaches have been tested in an experiment of classification of pressure images. These methods include a transfer learning approach using a pre-trained CNN on an RGB images dataset and a custom-made CNN trained from scratch with tactile information. A comparative study of performance between them has been carried out.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech. Spanish project DPI2015-65186-R, the European Commission under grant agreement BES-2016-078237, the educational project PIE-118 of the University of Malag

    Kilo-instruction processors: overcoming the memory wall

    Get PDF
    Historically, advances in integrated circuit technology have driven improvements in processor microarchitecture and led to todays microprocessors with sophisticated pipelines operating at very high clock frequencies. However, performance improvements achievable by high-frequency microprocessors have become seriously limited by main-memory access latencies because main-memory speeds have improved at a much slower pace than microprocessor speeds. Its crucial to deal with this performance disparity, commonly known as the memory wall, to enable future high-frequency microprocessors to achieve their performance potential. To overcome the memory wall, we propose kilo-instruction processors-superscalar processors that can maintain a thousand or more simultaneous in-flight instructions. Doing so means designing key hardware structures so that the processor can satisfy the high resource requirements without significantly decreasing processor efficiency or increasing energy consumption.Peer ReviewedPostprint (published version

    Critical behavior of 2 and 3 dimensional ferro- and antiferromagnetic spin ice systems in the framework of the Effective Field Renormalization Group technique

    Full text link
    In this work we generalize and subsequently apply the Effective Field Renormalization Group technique to the problem of ferro- and antiferromagnetically coupled Ising spins with local anisotropy axes in geometrically frustrated geometries (kagome and pyrochlore lattices). In this framework, we calculate the various ground states of these systems and the corresponding critical points. Excellent agreement is found with exact and Monte Carlo results. The effects of frustration are discussed. As pointed out by other authors, it turns out that the spin ice model can be exactly mapped to the standard Ising model but with effective interactions of the opposite sign to those in the original Hamiltonian. Therefore, the ferromagnetic spin ice is frustrated, and does not order. Antiferromagnetic spin ice (in both 2 and 3 dimensions), is found to undergo a transition to a long range ordered state. The thermal and magnetic critical exponents for this transition are calculated. It is found that the thermal exponent is that of the Ising universality class, whereas the magnetic critical exponent is different, as expected from the fact that the Zeeman term has a different symmetry in these systems. In addition, the recently introduced Generalized Constant Coupling method is also applied to the calculation of the critical points and ground state configurations. Again, a very good agreement is found with both exact, Monte Carlo, and renormalization group calculations for the critical points. Incidentally, we show that the generalized constant coupling approach can be regarded as the lowest order limit of the EFRG technique, in which correlations outside a frustrated unit are neglected, and scaling is substituted by strict equality of the thermodynamic quantities.Comment: 28 pages, 9 figures, RevTeX 4 Some minor changes in the conclussions. One reference adde
    corecore