KILO-INSTRUCTION PROCESSORS:
OVERCOMING THE MEMORY WALL

KILO-INSTRUCTION PROCESSORS ARE A NEW TYPE OF OUT-OF-ORDER

|

Adrian Cristal,
Oliverio J. Santana,
Francisco Cazorla,
Marco Galluzzi,
Tanaus Ramirez,
Miquel Pericas, and
Mateo Valero
niversitat Politecnica de

Catalunya and Barcelona

Supercomputing Center

SUPERSCALAR PROCESSOR THAT OVERLAPS LONG MEMORY ACCESS DELAYS

BY MAINTAINING THOUSANDS OF IN-FLIGHT INSTRUCTIONS, IN A SCALABLE,

EFFICIENT MANNER.

e o o 0 o o Historically, advances in integrated
circuit technology have driven improvements
in processor microarchitecture and led to
today’s microprocessors with sophisticated
pipelines operating at very high clock fre-
quencies. However, performance improve-
ments achievable by high-frequency
microprocessors have become seriously limit-
ed by main-memory access latencies because
main-memory speeds have improved at a
much slower pace than microprocessor speeds.
It’s crucial to deal with this performance dis-
parity, commonly known as the memory wall,'
to enable future high-frequency microproces-
sors to achieve their performance potential.

To overcome the memory wall, we propose
kilo-instruction processors—superscalar
processors that can maintain a thousand or
more simultaneous in-flight instructions.
Doing so means designing key hardware struc-
tures so that the processor can satisfy the high
resource requirements without significantly
decreasing processor efficiency or increasing
energy consumption.

Nature of the memory wall

One of the first approaches to the memory
wall problem was the development of cache
memory hierarchies. Cache memories exploit
program locality and can dramatically reduce
the number of long-latency accesses to main
memory. The first level, or L1 cache, is built

Published by the IEEE Computer Society

into the processor core and typically takes one
to three processor clock cycles to access. If
there is a miss in the L1 cache, the on-chip L2
cache takes on the order of 10 processor cycles.
Accessing main memory, on the other hand,
takes at least an order of magnitude longer,
and in the future this will become two orders
of magnitude, that is, several hundred clock
cycles. (In general, the cache hierarchy can
have more than two levels, but to simplify our
discussion here, we assume two levels with the
understanding that the same principles apply
to systems with deeper cache hierarchies.)

Modern superscalar processors employ out-
of-order execution as a way of smoothing out
disruptions caused by data cache misses (see
the “Hiding latency in superscalar processors”
sidebar). If a load instruction should experi-
ence a data cache miss, then instructions that
depend on the miss data must wait in the issue
queue(s). Meanwhile, independent instruc-
tions are free to execute; they issue from the
issue queue(s) and essentially “pass” the
blocked load instruction and its dependent
instructions. For an L1 cache miss, these out-
of-order instructions can often completely
hide the L2 access latency, so the miss causes
little or no performance loss.

This approach is much less effective for the
long L2 cache misses, however. For example,
along the top of Figure 1 is a sequence of
instructions in program order. Following a

0272-1732/05/$20.00 © 2005 IEEE

Hiding latency in superscalar processors

At the beginning of a superscalar pipeline like that shown in Figure A,
the instruction fetch unit relies on branch prediction to fetch a stream of
instructions following the most likely execution path. The processor
decodes fetched instructions and assigns physical registers to hold their
results. This register renaming process maps the architected registers
into a larger set of physical registers and assures that any interinstruction
dependences are true data dependences. After renaming, instructions go
into an instruction issue queue (or one of a small number of issue queues,
depending on the implementation), and the processor
assigns an entry for the instruction in the reorder buffer

all the pending or in-flight instructions. Among other things, the ROB
assures that the processor can construct the correct architected state at
the time of a trap or interrupt.

\When an instruction commits, its physical register holds the value of the
architected register that is mapped to it; hence the rename register can
release the physical register previously assigned to the same architected
register, permitting its reassignment. Also, at the time a load or store instruc-
tion commits, the processor can release its LSQ entry and physically write
data values held in the store queue to the memary hierarchy.

(ROB). It also assigns entries in load-store queues ?;?j?cctgr
(LSQs) to load and store instructions . P : Decode)
. . . —» and ——>| Reorder buffer |—> Commit
Instructions can issue from an issue queue as soon Fetch | rename
as all their input operand values are ready.(subject to engine ->| Integer queue | : >| ALU |
constraints such as available functional units and reg- ——
ister read ports). So, strictly speaking, the issue queue .| Floating-point
is not first-in first-out (FIFO); instructions can issue out- queue
of-order. On the other hand, the ROB follows a strict
. —>| Load/store queue
FIFO discipline, and the processor does not remove (or
commit) an instruction from the ROB until it and all L Physical
prior instructions have completed. When an instruc- register file
tion commits, its result becomes part of the architected
program state. Hence, the ROB contains a record of Figure A. Block diagram of an out-of-order superscalar processor.
Instructions
ROB Cache ROB
full miss full
' I-----// ----- I v I-----// ------
Normal execution Normal execution A
Execution Execution
stalled stalled
/ /

Memory access

Memory access

Figure 1. Sequence of instructions containing data cache misses. \When the reorder buffer fills up, instruction execution stalls.

load instruction that misses in the cache (black
boxes in the figure) are several dependent
instructions (gray boxes). However, there are
also independent instructions (white boxes).

When an L2 miss occurs, it triggers a mem-

ory access for the miss data, and normal
instruction execution continues. However,
when the load that misses reaches the head of

the reorder buffer (ROB), it blocks, and no

instructions can commit until the load

MAY—JUNE 2005

[EEE MICRO

FUTURE TRENDS

completes. Eventually, the ROB will fill up
completely; no more instructions can go into
the issue queue(s) and instruction execution
stalls, regardless of whether or not there are
further independent instructions.? If the miss
latency is several hundred clock cycles, then
the processor will spend most of this time idle,
with the ROB blocked, waiting for the load
miss instruction to complete.

To make matters worse, cache misses often
happen in bursts because of program work-
ing set changes. As soon as the ROB becomes
unblocked, it often blocks again due to anoth-
er L2 miss. This produces a series of long stall
periods, waiting for main memory to respond
to a series of L2 misses. The memory wall
strongly asserts itself.

Overcoming the memory wall

One solution to the memory wall problem is
to reduce the number of L2 misses in the first
place by prefetching data from the memory to
the cache. Conventional prefetch techniques
use heuristics to identify addressing patterns
and predict memory addresses that load
instructions will likely request in the future. For
long-latency memory, prefetching is of limit-
ed value, however. One problem is that address-
ing patterns must be highly predictable, and
this is not always the case. A second problem is
that prefetches must occur far in advance to
overcome very long memory latencies, and this
makes prefetch addresses more difficult to pre-
dict. Finally, any unused prefetches create
wasteful memory traffic, which may slow down
other processors in multiprocessor systems,
degrading system performance.

Assisted threads’ is a much more elaborate
technique that uses a higher amount of
semantic information to improve prefetch
effectiveness. It relies on pre-executing future
parts of the program, selected at compile time
or generated dynamically at runtime. Then,
it takes advantage of idle processor resources
to pre-execute the selected parts of the pro-
gram. For example, in simultaneous multi-
threaded processors, idle thread contexts can
perform the pre-execution. This pre-execu-
tion by idle threads generates smart memory
prefetches based on actual program flow,
thereby boosting the cache performance of
primary-thread execution.

Runahead execution also targets enhanced

prefetching behavior.® This technique pre-
executes future instructions while an L2 cache
miss is in progress. To avoid blocking the
ROB, runahead execution temporarily assigns
a bogus value to the load miss and specula-
tively executes all the following instructions,
releasing ROB entries. Later, when the load
miss finishes, the processor recovers the archi-
tected state at this point and restarts execu-
tion using the correct value. It discards all the
results obtained during the speculative exe-
cution because they might be based on the
bogus value. The speculative execution pro-
vides accurate prefetches when memory oper-
ations are re-executed.

Assisted threads and runahead execution
can improve prefetch accuracy, but still suffer
from some of the disadvantages of conven-
tional prefetching. In addition, these tech-
niques execute many extra instructions with
throw-away results. As a consequence, these
speculative techniques not only consume
available resources, but also significantly
increase energy consumption.

Kilo-instruction processors

Kilo-instruction processors overcome the
memory wall by dramatically increasing the
number of in-flight instructions; doing so
hides L2 data cache misses in a manner simi-
lar to ways for hiding L1 misses. Consider Fig-
ure 2, which is similar to Figure 1, except that
the much larger ROB in a kilo-instruction
processor allows many more in-flight instruc-
tions before it blocks. This means that not
only can more independent instructions over-
lap the L2 cache miss, but program execution
reaches other L2 misses more quickly and can
overlap the misses with each other.

Figure 3 illustrates the impact of increasing
the number of in-flight instructions support-
ed by a four-instruction-wide out-of-order
superscalar processor when the main-memory
access latency ranges from 100 to 1,000 cycles.
We provide data for both the SPEC2000 inte-
ger and floating-point applications, using a
512-Kbyte 4-way-associative second-level
cache with 10-cycle latency. These graphs
show performance measured as average
instructions executed per cycle versus the num-
ber of in-flight instructions. The dashed line
shows performance with an ideal memory sys-
tem (no cache misses). For conventional super-

Instructions

Cache
miss

Cache
miss

Normal execution

Normal execution

Memory access

 J

Memory access

Figure 2. With a kilo-instruction processor, hardware resources support large number of in-flight instructions. Doing so great-
ly reduces stalls due to ROB fills and permits the overlap of long-latency memory accesses.

IPC

128

256 512
In-flight instructions (SPECint)

1,024 2,048 4,096

4.0

Perfect memory

IPC

Memory latency
(cycles)
o100
E500
01,000

128

256

512 1,024 2,048 4,096

In-flight instructions (SPECfp)

Figure 3. Average performance of a fourinstruction-wide out-of-order superscalar processor executing the SPEC2000 integer
and floating-point programs for different memory latencies and number of supported in-flight instructions.

scalar processors (those with 128 in-flight
instructions), increasing the main-memory
latency causes a huge performance degrada-
tion: 45 percent for integer applications, 65
percent for floating-point. It is possible to
largely mitigate this performance degradation
by increasing the number of in-flight instruc-
tions. In a processor with 4,096 in-flight
instructions, increasing the main-memory

latency results in a lower degradation: 40 per-
cent for the integer programs and only 15 per-
cent for floating-point programs. In other
words, when the main memory access latency
is 1,000 cycles, a processor with 4,096 in-flight
instructions improves the performance of a
processor with 128 in-flight instructions by 50
percent for integer programs, which are often
limited by the presence of pointer chasing

MAY—JUNE 2005

]

FUTURE TRENDS

T0) iaan
< 607
(o))

@©

T 50|
[0}

o

g 4o
2 30|
S

3 20|
%
B

0
ST S O P .S ..
B > P P S A & e

O QTR XN NN N
S S S S S S S O@‘

’\

Cycles

Figure 4. Distribution of instruction flight times measured in
cycles. This time begins when an instruction goes into the
ROB and ends when it commits and leaves the ROB.

[EEE MICRO

(multiple levels of indirection through mem-
ory) and hard-to-predict branches. Because
these limitations are much less severe for float-
ing-point programs, their performance is
improved by 250 percent.

These results show that increasing the num-
ber of in-flight instructions is an effective way
of tolerating large memory access latencies.
Therefore, at least conceptually, kilo-instruc-
tion processors provide a promising approach
for future processors, making them capable of
tolerating large memory access latencies.

Efficient kilo-instruction processor design

Kilo-instruction processors originated in a
proposal by Cristal et al.”® Although the idea
is conceptually simple, one cannot design
kilo-instruction processors simply by increas-
ing the sizes of the major processor structures:
the ROB, issue queue(s), physical registers,
and load-store queues (LSQs). Naively scal-
ing up the number of entries in these struc-
tures to support thousands of in-flight
instructions is impractical because of area,
temperature, and energy consumption con-
straints, and because the sizes of these struc-
tures often determine the processor cycle time.
Cristal et al. proposed overcoming this prob-
lem by using an efficient mechanism that
changes the management of these processor
structures, making the design of kilo-instruc-
tion processors practical.

Figure 4 shows a key property that makes

kilo-instruction processors feasible. The fig-
ure contains the distribution of instruction
flight times; that is, the lengths of time instruc-
tions are in the ROB. This number is impor-
tant because the reservation of many of the
critical hardware resources occurs when an
instruction goes into the ROB; those resources
are not released until the instruction commits
and leaves the ROB.

The Figure 4 data is an average over the
SPECtp2000 benchmarks for a processor that
can maintain 128 in-flight instructions; the
main-memory latency is 1,000 cycles. The key
aspect of this data is the bimodal nature of
instruction behavior. Most instructions either
have a short flight-time (that is, they hold
resources for a short time) or they hold
resources for a very long time. These latter
instructions are the ones blocked in the ROB
because of long-latency memory operations.

Clearly, the hardware resources reserved by
instructions in the second category are high-
ly underutilized.” Kilo-instruction processors
exploit the bimodal flight time distribution
by attempting to give critical resources to the
short-flight-time instructions (at the left of
the distribution) and early releasing resources
that the long-flight-time instructions use
(reserving them again, later). In some cases,
the processor temporarily off-loads the long-
flight-time instructions to lower-cost hard-
ware structures. Kilo-instruction processors
apply targeted implementations for each type
of hardware structure and integrate these
structures in a cohesive way. We discuss imple-
mentations for each of the four major hard-
ware structures in the following subsections.

Early release of ROB resources via checkpointing

In a conventional superscalar processor, the
ROB keeps a copy of all in-flight instructions
so the processor can restore the correct archi-
tectural state after branch mispredictions or
exceptions (traps and interrupts). Thus, main-
taining thousands of in-flight instructions
would require a ROB having thousands of
entries. Kilo-instruction processors reduce the
ROB’s size requirement by using selective
checkpointing.

A checkpoint is a snapshot of the processor
state taken at a specific instruction of the pro-
gram being executed. Using this snapshot, the
processor can restore state to that point if an

exception or misprediction should occur. The
ROB allows the restoration of the correct state
at any instruction. This is not strictly necessary
for correct operation, however. An alternative
is to checkpoint processor state for a subset of
instructions; then, if there is an exception or
mispredicted branch, the processor can roll
the state back to the closest checkpoint prior
to the instruction causing the exception. Exe-
cution can then proceed forward until it
reaches the correct, precise state. Using a rel-
atively small set of checkpoints for long-flight-
time instructions assures safe points of return
and considerably reduces ROB requirements.
The cost is longer recovery time when a long-
flight-time instruction suffers an exception or
(more importantly) a branch misprediction.

The implementation of a checkpointing
mechanism involves several design decisions.
First, the processor can use a few or many
checkpoints. The latter reduces the recovery
penalty, but increases the implementation
cost. Second, the designer should determine
the instruction types for checkpointing. Final-
ly, the designer should define the state infor-
mation to be captured at each checkpoint. In
general, it is only necessary to keep the infor-
mation strictly required to recover the correct
processor state. However, it can be beneficial
to store additional information to reduce
recovery time.

Depending on the alternatives, researchers
have proposed several checkpointing tech-
niques for implementing processors support-
ing a large number of in-flight instructions.
Cristal et al.® propose selective checkpoints
taken only at certain load instructions. In par-
ticular, this work recommends taking a check-
point when a load that misses in the L2 cache
reaches the head of the ROB. After taking
such a checkpoint, the processor can early
release the ROB resources. In addition, this
also releases the physical registers and LSQ
slots used by instructions in the ROB. Instruc-
tions independent of the L2-missing load can
then use these resources.

The Cherry architecture,® an independent-
ly developed proposal, uses a single checkpoint
outside the ROB, which makes it possible to
divide the ROB into two regions: speculative
and nonspeculative. Cherry can then early
release physical registers and LSQ entries for
instructions in the nonspeculative ROB region.

The Checkpoint Processing and Recovery
(CPR) architecture’ is a proposal that uses a
multi-checkpointing mechanism similar to
that proposed by Cristal et al.* CPR removes
the ROB entirely and checkpoints hard-to-
predict branches at the decode stage.

The conventional ROB can also be replaced
with a structure called the psendo-ROB."° The
pseudo-ROB has the same functionality as a
ROB, but the processor removes instructions
that reach the pseudo-ROB’s head at a fixed rate,
independent of the instructions’ completion
state. Because the processor state is recoverable
for any instruction in the pseudo-ROB, gener-
ating a checkpoint is only necessary when an
incomplete instruction leaves the pseudo-ROB.
Delaying checkpoint generation in this manner
reduces the performance impact of branch mis-
prediction recovery. On average, 97.5 percent
of mispredictions in SPECint2000 programs
arise from branches that are still inside the
pseudo-ROB. The percentage is even higher for
SPEC{p2000 programs: near 99 percent. This
means that most branch mispredictions do not
need to roll back to the previous checkpoint to
recover the correct state, minimizing the mis-
prediction penalty thata non-ROB design, like
the CPR architecture, would suffer.

Bi-level issue queues

Unlike a conventional ROB, the issue
queue holds an instruction only while the
instruction is waiting for its input data
operands and execution resources. After an
instruction issues, its issue queue slot becomes
available for another instruction. Conse-
quently, an instruction may spend much less
time in the issue queue than in the ROB. On
the other hand, the issue queue is a very
expensive resource: It is on the critical path
for instruction execution and is one of the
major energy consumers in the processor core.
This means that a practical superscalar design
has relatively few issue queue slots. Further-
more, when a load instruction suffers a long-
latency data cache miss, any queued
instructions dependent on the load continue
to occupy their issue queue slots, as do any
instructions that depend on those instruc-
tions. In general, some issue queue slots may
not be tied up in this way? so instruction exe-
cution can progress. However, this progress
will be restricted, and any additional L2 data

MAY—JUNE 2005

i

FUTURE TRENDS

[EEE MICRO

cache misses will tie up more (possibly all)
issue queue slots.

A kilo-instruction processor overcomes the
issue queue limitation by using bi-level issue
queues, based on the bimodal distribution of
issue queue occupancy just noted. First, the
processor detects instructions that will hold an
issue queue slot for a long time. It then
removes these instructions from the primary
issue queue, off-loading them to larger, but
slower and less complex, structures. Later,
when the long-latency load instruction com-
pletes and its dependent instructions become
ready, the processor moves the off-loaded
instructions back into the primary issue queue.

The Waiting Instruction Buffer (WIB)"! fol-
lows the principles just outlined. It is a struc-
ture that holds all the instructions dependent
on an L2 cache miss until the miss is resolved
and the corresponding data returns from
memory. The Slow-Lane Instruction Queue
(SLIQ)" is similar in concept to the WIB, but
it is an integral component of an overall kilo-
instruction microarchitecture. For example,
the microarchitecture also contains a pseudo-
ROB, which reduces the complexity required
to accurately detect the instructions with long
issue queue occupancies. The pseudo-ROB
allows long-occupancy detection to be deferred
until it becomes critical, thus increasing the
accuracy of long-occupancy instruction detec-
tion, while at the same time reducing the com-
plexity of the logic required. The recently
proposed Continual Flow Pipelines (CFP)
architecture'? is an efficient implementation
of a bi-level issue queue, based on the Pentium
4 pipeline. It contains a Slice Data Buffer
(SDB), which is similar to the WIB and the
SLIQ. And, as with the SLIQ, the SDB is an
integral part of an overall design with a com-
plete set of scalable structures.

Physical register file

A conventional superscalar processor
assigns physical registers to architected regis-
ters when an instruction enters the issue queue
and ROB. A physical register remains assigned
until a later instruction writing to the same
architected register commits. Hence, an
instruction reserves a physical register for its
entire flight time (and then some). Because a
large fraction of in-flight instructions have
assigned physical registers, the number of

physical registers required in a kilo-instruc-
tion processor would be extremely large, on
the order of many hundreds.

Although assigned to an instruction early
in the process, a physical register often is not
written with a value until much later. In the
meantime, its primary function is tracking
data dependences. That is, the actual physi-
cal resource goes unused for a long time; its
nameis the only thing that is really important.
Based on this observation, we can greatly
reduce physical register requirements by using
techniques for late register allocation, such as
virtual registers. Instead of assigning a physical
register to each renamed instruction, the
renaming unit assigns only a virtual tag. These
virtual tags keep track of the data depen-
dences, making it unnecessary to assign a
physical register to an instruction until it pro-
duces result.

In addition, the conventional rule for releas-
ing physical registers is often very conserva-
tive. In theory, a processor can release a
physical register as soon as it is known that no
later instruction will read the register’s value;
for example, this could happen while the
instruction holding the register is still in the
ROB. This leads to techniques for the early
(non-conservative) release of physical regis-
ters. One possibility is to associate a counter
with each physical register for tracking the
unexecuted instructions that read the regis-
ter’s contents. An instruction that will read
the register increments the counter after reg-
ister renaming; the instruction will later decre-
ment the counter after reading the register.
The processor can release the physical regis-
ter when the counter decrements to zero. A
problem remains if the processor should need
the register’s value to reconstruct the precise
architected state in the event of an exception,
but checkpoints solve this problem.

To greatly reduce physical register require-
ments in kilo-instruction processors, we com-
bine techniques for early register release and
late register allocation with the checkpoint-
ing mechanism, leading to an aggressive
register-recycling technique that we call
ephemeral registers” This technique dissociates
register release from the instruction commit
process, and register allocation from instruc-
tion renaming.

The CFP architecture uses a similar

approach for releasing physical registers
assigned to instructions dependent on a cache
miss.'? At the time these instructions enter the
SDB, the CFP architecture uses physical reg-
ister numbers as virtual tags. The instructions
subsequently reacquire physical registers when
they reenter the pipeline. In addition, this
technique reads out register contents (similar
to the original Tomasulo algorithm), which
typically causes source registers to free up
sooner than if they were tied up by load-miss-
dependent instructions.

Scalability of load-store queues

The processor inserts load and store instruc-
tions into the LSQs at the same time it inserts
them into the ROB. The primary function of
these queues is to guarantee that all load and
store instructions reach the memory system
and update the architected state in correct pro-
gram order.

An instruction reserves an LSQ slot for its
entire flight time, so the number of LSQ slots
should be proportional to the total number
of in-flight instructions. As with issue queue
slots, the LSQ slots are relatively complex
structures that do not readily scale, so main-
taining thousands of in-flight instructions can
lead to an LSQ bottleneck. Using techniques
for early release of load instructions can great-
ly reduce load queue resource requirements.®®
Several recent proposals deal with the scala-
bility problems of store queues; these include
bi-level’ and partitioned'® queues. Any of
these mechanisms can be implemented in a
kilo-instruction processor.

When integrated into an overall microar-
chitecture, the selective checkpoint technique
combined with a pseudo-ROB, the SLIQ,
ephemeral registers, and advanced LSQ tech-
niques can support thousands of in-flight
instructions while avoiding scalability prob-
lems found in conventional ROBs, issue
queues, physical register files, and LSQs.

Future research in kilo-instruction
processors

Kilo-instruction processors perform best for
floating-point applications. Performance for
integer programs is improved, but often not at
the same level as floating-point. The achieved
performance of integer applications is some-
times limited by hard-to-predict branches and

pointer chasing. To overcome these limita-
tions, kilo-instruction processors invite the
reconsideration of techniques that might not
be considered feasible or worthwhile in the
context of conventional small-window super-
scalar processors. Such techniques might
make good sense, however, in using thousands
of in-flight instructions.

Hard-to-predict branches are especially
harmful because a branch misprediction caus-
es a pipeline flush, eliminating the advantage
of a large number of in-flight instructions.
Mispredicted branch instructions that depend
on long-latency memory operations are even
more detrimental because of the very long
delay in discovering the misprediction. This
provides a strong incentive for ongoing
research efforts directed at accurate branch
predictors. It is also possible to apply addi-
tional techniques. For example, combining
kilo-instruction processors with multipath
execution would allow multiple lows of con-
trol on a much larger scale than previously
considered. It is also possible to combine kilo-
instruction processors with mechanisms for
detecting control-independent instructions
that follow branches. There is no need to flush
control-independent instructions after a
branch misprediction, saving resources, ener-
gy, and execution bandwidth.

In some programs, pointer chasing is even
more harmful than hard-to-predict branches,
because it creates a serialization in the execu-
tion of long-latency memory operations,
inhibiting the overlap illustrated in Figure 2.
Although just 4 percent of load instructions
chase pointers in floating-point applications,
this percentage rises to 23 percent in integer
programs. To solve this problem, value pre-
diction techniques might be useful for pre-
dicting the addresses along a pointer chain,
thereby allowing the overlap of these accesses.

Kilo-instruction processors can also be incor-
porated in multiprocessor designs. For exam-
ple, the kilo-instruction multiprocessor
proposed by Galluzzi et al.'* uses kilo-
instruction processors as computing nodes for
building small-scale non-uniform memory
access (NUMA) multiprocessors. In general,
multiprocessor systems aggravate the memory
latency problem, and in NUMA processors, the
latency for accessing non-local data may be very
long. Therefore, kilo-instruction processors and

MAY—JUNE 2005

if

FUTURE TRENDS

[EEE MICRO

multiprocessors seem to be a natural match; very
long memory latencies can be hidden, boosting
overall system performance.

Even more interesting is the use of the kilo-
instruction processor checkpoint capability to
implement multiprocessor transaction coher-
ence and consistency” in a completely trans-
parent manner. Checkpoints allow a processor
to combine a series of memory load and store
operations into a bundle that is committed to
memory as a single transaction. If a memory
operation in one processor’s memory transac-
tion would cause a coherence or consistency
violation with a second processor’s uncom-
mitted loads and stores, then this violation can
trigger the second processor to rollback and
resume execution from a checkpoint preced-
ing the violation. In contrast to the previous
proposal,” the kilo-instruction processor
checkpoint mechanism does not require any
new instructions or re-writing of parallel soft-
ware for correct operation. Moreover, there
are a number of hardware implemented
enhancements that can improve performance
by adaptively selecting checkpoints based on
dynamically observed memory behaviour.

In summary, kilo-instruction processors
provide a flexible paradigm for constructing
computer systems. Kilo-instruction proces-
sors are able to cross-pollinate readily with
other system-level architecture techniques,
thereby improving their capabilities and
boosting overall processor performance. The
possibilities are almost endless, creating a large
number of new and appealing topics for
future research. MCRD

Acknowledgments

This work has been supported by the Min-
istry of Education of Spain under contract
TIN-2004-07739-C02-01, the HiPEAC
European Network of Excellence, and the
Barcelona Supercomputing Center. We would
like to thank Srikanth Srinivasan, Ravi Rajwar,
Haitham Akkary, and Konrad Lai for their
worthwhile comments on this work. Thanks
also go to Ayose Falcén, Rubén Gonzilez,
Daniel Jimenez, Josep Llosa, José F. Martinez,
Daniel Ortega, and Alex Pajuelo for their con-
tributions to the kilo-instruction processors.
We would like to give special thanks to Jim
Smith for his encouragement and valuable help
during the writing of this paper.

References
1. W.A. Wulf and S.A. McKee, "Hitting the

Memory Wall: Implications of the Obvious,”
ACM SIGARCH Computer Architecture
News, vol. 23, no. 1, Mar. 1995, pp. 20-24.

2. T.Karkhanis and J.E. Smith, “A Day in the Life
of a Data Cache Miss,” Proc. 2nd Ann. Work-
shop on Memory Performance Issues, 2002.
http://www.ece.wisc.edu/~jes/papers/
wmpi02.tejas.pdf.

3. M. Dubois and Y. Song, Assisted Execution,
tech. report CENG 98-25, Dept. EE-Systems,
Univ. Southern California, 1998.

4. O. Mutlu et al., “Runahead Execution: An
Alternative to Very Large Instruction Win-
dows for Out-of-Order Processors,” Proc.
9th Int’l Symp. High-Performance Computer
Architecture (HPCA 03), IEEE CS Press,
2003, pp. 129-140.

5. A. Cristal et al., White paper: grant proposal
to Intel-MRL in January 2002, Departament
d'Arquitectura de Computadors, Universitat
Politecnica de Catalunya, 2002.

6. A. Cristal et al., Large Virtual ROBs by
Processor Checkpointing, tech. report UPC-
DAC-2002-39, Dept. de Computadors, Uni-
versitat Politecnica de Catalunya, 2002.
Submitted to 35th Int'l Sump. Microarchi-
tecture (MICRO-35).

7. A. Cristal et al., "Toward Kilo-instruction
Processors,” ACM Transactions on Archi-
tecture and Code Optimization, vol. 1, no. 4,
Dec. 2004, pp. 389-417.

8. J.F. Martinez et al., “Checkpointed Early
Resource Recycling in Out-of-Order Micro-
processors,” Proc. 35th Int’l Symp. Microar-
chitecture (Micro-35), IEEE CS Press, 2002,
pp. 3-14.

9. H. Akkary, et al., “Checkpoint Processing
and Recovery: Towards Scalable Large
Instruction Window Processors,” Proc. 36th
Int’l Symp. Microarchitecture (Micro-36),
IEEE CS Press, 2003, pp. 423-434.

10. A. Cristal et al., “"Out-of-Order Commit
Processors,” Proc. 10th Int’l Symp. High-
Performance Computer Architecture (HPCA
04), IEEE CS Press, 2004, pp. 48-59.

11. A. Lebeck et al., "A Large, Fast Instruction
Window for Tolerating Cache Misses,"” Proc.
29th Int’l Symp. Computer Architecture
(ISCA 02), IEEE CS Press, 2002, pp. 59-70.

12. S.T. Srinivasan et al.,, “Continual Flow
Pipelines,” Proc. 11th Int’l Conf. Architec-

tural Support for Programming Languages
and Operating Systems (ASPLOS 04), ACM
Press, 2004, pp. 107-119.

13. S. Sethumadhavan et al., “Scalable Hard-
ware Memory Disambiguation for High ILP
Processors,” Proc. 36th Int’l Symp. Microar-
chitecture (Micro-36), IEEE CS Press, 2003,
pp. 399-410.

14. M. Galluzzi et al., "A First Glance at Kilo-
Instruction Based Multiprocessors,” Proc.
1st Conf. Computer Frontiers, ACM Press,
2004, pp. 212-221.

15. L. Hammond et al, “Transactional Coher-
ence and Consistency: Simplifying Parallel
Hardware and Software,” IEEE Micro, vol
24, no. 6, Nov/Dec 2004, pp. 92-103.

Adridn Cristal is an assistant professor and a
doctoral candidate in the Computer Archi-
tecture Department at the Polytechnic Uni-
versity of Catalonia (UPC), Spain. His
research interests include processor microar-
chitecture and, in particular, kilo-instruction
processors. Cristal has a BS and an MS in
computer science from the University of
Buenos Aires, Argentina.

Oliverio J. Santana is a collaborator profes-
sor in the Computer Architecture Depart-
ment at UPC. His research interests include
complexity-effective fetch and decoding archi-
tectures for high-performance processors. San-
tana has a PhD in computer science from
UPC, as well as a BS and an MS in comput-
er science from the University of Las Palmas

de Gran Canaria (ULPGC), Spain.

Francisco Cazorla is a doctoral candidate in
the Computer Architecture Department at
UPC. His research interests include fetch poli-
cies for simultaneous multithreaded architec-
tures. Cazorla has a BS and an MS in
computer science from ULPGC.

Marco Galluzzi is a doctoral candidate in the
Computer Architecture Department at UPC.
His research interests include coherence and
consistence multiprocessor protocols, and
their relationships with techniques for toler-
ating the memory latency. Galluzzi has a BS
and an MS in computer science from

ULPGC.

Tanausti Ramirez is a doctoral candidate in
the Computer Architecture Department at
UPC. His research interests include tech-
niques for overcoming the memory wall prob-
lem. Ramirez has a BS and an MS in
computer science from ULPGC.

Miquel Pericis is a researcher at the Barcelona
Supercomputing Center and a doctoral can-
didate in the Computer Architecture Depart-
ment at UPC. His research interests include
efficient kilo-instruction processor imple-
mentations. Pericas has an MS in telecom-
munications from UPC.

Mateo Valero is a professor in the Computer
Architecture Department at UPC. His
research interests include high-performance
architectures. Valero has a PhD in telecom-
munications from UPC. He is an IEEE Fel-
low, an Intel Distinguished Research Fellow,
and an ACM Fellow. Since 1994, he is a foun-
dational member of the Royal Spanish Acad-
emy of Engineering.

Direct questions and comments about this
article to Mateo Valero, D6-201 Campus
Nord UPC, C/ Jordi Girona 1-3, 08034

Barcelona, Spain; mateo@ac.upc.edu.

e articles and
special issues

e conference
news

* registration

deadlines
Available
it i for FREE
SOCIETY to members.

computer.org/e-News

