1,415 research outputs found

    Magnetic properties of (Fe1−x_{1-x}Cox_x)2_2B alloys and the effect of doping by 5dd elements

    Full text link
    We have explored, computationally and experimentally, the magnetic properties of \fecob{} alloys. Calculations provide a good agreement with experiment in terms of the saturation magnetization and the magnetocrystalline anisotropy energy with some difficulty in describing Co2_2B, for which it is found that both full potential effects and electron correlations treated within dynamical mean field theory are of importance for a correct description. The material exhibits a uniaxial magnetic anisotropy for a range of cobalt concentrations between x=0.1x=0.1 and x=0.5x=0.5. A simple model for the temperature dependence of magnetic anisotropy suggests that the complicated non-monotonous temperature behaviour is mainly due to variations in the band structure as the exchange splitting is reduced by temperature. Using density functional theory based calculations we have explored the effect of substitutional doping the transition metal sublattice by the whole range of 5dd transition metals and found that doping by Re or W elements should significantly enhance the magnetocrystalline anisotropy energy. Experimentally, W doping did not succeed in enhancing the magnetic anisotropy due to formation of other phases. On the other hand, doping by Ir and Re was successful and resulted in magnetic anisotropies that are in agreement with theoretical predictions. In particular, doping by 2.5~at.\% of Re on the Fe/Co site shows a magnetocrystalline anisotropy energy which is increased by 50\% compared to its parent (Fe0.7_{0.7}Co0.3_{0.3})2_2B compound, making this system interesting, for example, in the context of permanent magnet replacement materials or in other areas where a large magnetic anisotropy is of importance.Comment: 15 pages 17 figure

    Organization theory and military metaphor: time for a reappraisal?

    Get PDF
    A ‘conventional’ use of military metaphor would use it to convey attributes such as hierarchical organization, vertical communication and limited autonomy. This is often used in contrast to a looser form of organization based on the metaphor of the network. However, this article argues that military practice is more complex, with examples of considerable autonomy within the constraints of central direction. It is suggested that not only might this be a more useful metaphor for many contemporary organizations, but also that simplistic uses of military metaphor divert our attention away from the functions that management hierarchies play. The discussion is embedded within a critical realist account of metaphor, arguing for both its value and the need for its further development

    Shifts in Soil Structure, Biological, and Functional Diversity Under Long-Term Carbon Deprivation

    Get PDF
    Soil organic matter is composed of a variety of carbon (C) forms. However, not all forms are equally accessible to soil microorganisms. Deprivation of C inputs will cause changes in the physical and microbial community structures of soils; yet the trajectories of such changes are not clear. We assessed microbial communities using phospholipid fatty acid profiling, metabarcoding, CO2 emissions, and functional gene microarrays in a decade-long C deprivation field experiment. We also assessed changes in a range of soil physicochemical properties, including using X-ray Computed Tomography imaging to assess differences in soil structure. Two sets of soils were deprived of C inputs by removing plant inputs for 10 years and 1 year, respectively. We found a reduction in diversity measures, after 10 years of C deprivation, which was unexpected based on previous research. Fungi appeared to be most impacted, likely due to competition for scarce resources after exhausting the available plant material. This suggestion was supported by evidence of bioindicator taxa in non-vegetated soils that may directly compete with or consume fungi. There was also a reduction in copies of most functional genes after 10 years of C deprivation, though gene copies increased for phytase and some genes involved in decomposing recalcitrant C and methanogenesis. Additionally, soils under C deprivation displayed expected reductions in pH, organic C, nitrogen, and biomass as well as reduced mean pore size, especially in larger pores. However, pore connectivity increased after 10 years of C deprivation contrary to expectations. Our results highlight concurrent collapse of soil structure and biodiversity following long-term C deprivation. Overall, this study shows the negative trajectory of continuous C deprivation and loss of organic matter on a wide range of soil quality indicators and microorganisms

    Improved methods using the reverse transcriptase polymerase chain reaction to detect tumour cells

    Get PDF
    Reverse transcriptase polymerase chain reaction (RT-PCR) is increasingly used to detect small numbers of circulating tumour cells, though the clinical benefit remains controversial. The largest single contributing factor to the controversy of its value is the different approaches to sample processing. The aim of this study was to compare the sensitivity and reproducibility of RT-PCR for the detection of tumour cells after four commonly used different methods of sample processing. Using RT-PCR, one tumour cell spiked in 2 ml of whole blood was detected after analysis of separated mononuclear cell RNA, whole blood total or poly-A+RNA. No false positives were identified with any method. However, the reproducibility of tumour cell detection was reduced after isolation of the mononuclear cell fraction. Only analysis of poly-A+RNA had a sensitivity of 100% in all the cell spiking experiments. In patient blood samples, analysis of poly-A+RNA increased the number of blood samples positive for tyrosine hydroxylase (TH) mRNA compared with those positive after analysis of total RNA. This may reflect high levels of cDNA reducing the efficiency of the PCR. Isolation of poly-A+RNA increases the sensitivity and reproducibility of tumour cell detection in peripheral blood. © 1999 Cancer Research Campaig

    Computational analysis of gene expression space associated with metastatic cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Prostate carcinoma is among the most common types of cancer affecting hundreds of thousands people every year. Once the metastatic form of prostate carcinoma is documented, the majority of patients die from their tumors as opposed to other causes. The key to successful treatment is in the earliest possible diagnosis, as well as understanding the molecular mechanisms of metastatic progression. A number of recent studies have identified multiple biomarkers for metastatic progression. However, most of the studies consider only direct comparison between metastatic and non-metastatic classes of samples.</p> <p>Results</p> <p>We propose an alternative concept of analysis that considers the entire multidimensional space of gene expression and identifies the partition of this space in which metastatic development is possible. To apply this concept in cancer gene expression studies we utilize a modification of high-dimension natural taxonomy algorithm FOREL. Our analysis of microarray data containing primary and metastatic cancer samples has revealed not only differentially expressed genes, but also relations between different groups of primary and metastatic cancer. Metastatic samples tend to occupy a distinct partition of gene expression space. Further pathway analysis suggests that this partition is delineated by a specific pattern of gene expression in cytoskeleton remodeling, cell adhesion and apoptosis/cell survival pathways. We compare our findings with both report of original analysis and recent studies in molecular mechanism of metastasis.</p> <p>Conclusion</p> <p>Our analysis indicates a single molecular mechanism of metastasis. The new approach does not contradict previously reported findings, but reveals important details unattainable with traditional methodology.</p

    Field Production and Functional Evaluation of Chloroplast-Derived Interferon-α2b

    Get PDF
    Type I interferons (IFNs) inhibit viral replication and cell growth and enhance the immune response, and therefore have many clinical applications. IFN-α2b ranks third in world market use for a biopharmaceutical, behind only insulin and erythropoietin. The average annual cost of IFN-α2b for the treatment of hepatitis C infection is $26 000, and is therefore unavailable to the majority of patients in developing countries. Therefore, we expressed IFN-α2b in tobacco chloroplasts, and transgenic lines were grown in the field after obtaining United States Department of Agriculture Animal and Plant Health Inspection Service (USDA-APHIS) approval. Stable, site-specific integration of transgenes into chloroplast genomes and homoplasmy through several generations were confirmed. IFN-α2b levels reached up to 20% of total soluble protein, or 3 mg per gram of leaf (fresh weight). Transgenic IFN-α2b had similar in vitrobiological activity to commercially produced PEG-Intron™ when tested for its ability to protect cells against cytopathic viral replication in the vesicular stomatitis virus cytopathic effect (VSV CPE) assay and to inhibit early-stage human immunodeficiency virus (HIV) infection. The antitumour and immunomodulating properties of IFN-α2b were also seen in vivo . Chloroplast-derived IFN-α2b increased the expression of major histocompatibility complex class I (MHC I) on splenocytes and the total number of natural killer (NK) cells. Finally, IFN-α2b purified from chloroplast transgenic lines (cpIFN-α2b) protected mice from a highly metastatic tumour line. This demonstration of high levels of expression of IFN-α2b, transgene containment and biological activity akin to that of commercial preparations of IFN-α2b facilitated the first field production of a plant-derived human blood protein, a critical step towards human clinical trials and commercialization
    • …
    corecore