2,303 research outputs found
Dispersion strengthening models
Strengthening behavior of crystalline solids containing uniform dispersion of fine particle
Determining All Universal Tilers
A universal tiler is a convex polyhedron whose every cross-section tiles the
plane. In this paper, we introduce a certain slight-rotating operation for
cross-sections of pentahedra. Based on a selected initial cross-section and by
applying the slight-rotating operation suitably, we prove that a convex
polyhedron is a universal tiler if and only if it is a tetrahedron or a
triangular prism.Comment: 18 pages, 12 figure
Most Published Research Findings Are False—But a Little Replication Goes a Long Way
While the authors agree with John Ioannidis that "most research findings are false," here they show that replication of research findings enhances the positive predictive value of research findings being true
Excision for simplicial sheaves on the Stein site and Gromov's Oka principle
A complex manifold satisfies the Oka-Grauert property if the inclusion
\Cal O(S,X) \hookrightarrow \Cal C(S,X) is a weak equivalence for every Stein
manifold , where the spaces of holomorphic and continuous maps from to
are given the compact-open topology. Gromov's Oka principle states that if
has a spray, then it has the Oka-Grauert property. The purpose of this
paper is to investigate the Oka-Grauert property using homotopical algebra. We
embed the category of complex manifolds into the model category of simplicial
sheaves on the site of Stein manifolds. Our main result is that the Oka-Grauert
property is equivalent to representing a finite homotopy sheaf on the Stein
site. This expresses the Oka-Grauert property in purely holomorphic terms,
without reference to continuous maps.Comment: Version 3 contains a few very minor improvement
Duality and Pro-Spectra
Cofiltered diagrams of spectra, also called pro-spectra, have arisen in
diverse areas, and to date have been treated in an ad hoc manner. The purpose
of this paper is to systematically develop a homotopy theory of pro-spectra and
to study its relation to the usual homotopy theory of spectra, as a foundation
for future applications. The surprising result we find is that our homotopy
theory of pro-spectra is Quillen equivalent to the opposite of the homotopy
theory of spectra. This provides a convenient duality theory for all spectra,
extending the classical notion of Spanier-Whitehead duality which works well
only for finite spectra. Roughly speaking, the new duality functor takes a
spectrum to the cofiltered diagram of the Spanier-Whitehead duals of its finite
subcomplexes. In the other direction, the duality functor takes a cofiltered
diagram of spectra to the filtered colimit of the Spanier-Whitehead duals of
the spectra in the diagram. We prove the equivalence of homotopy theories by
showing that both are equivalent to the category of ind-spectra (filtered
diagrams of spectra).
To construct our new homotopy theories, we prove a general existence theorem
for colocalization model structures generalizing known results for cofibrantly
generated model categories.Comment: Published by Algebraic and Geometric Topology at
http://www.maths.warwick.ac.uk/agt/AGTVol4/agt-4-34.abs.htm
A universal characterization of higher algebraic K-theory
In this paper we establish a universal characterization of higher algebraic
K-theory in the setting of small stable infinity categories. Specifically, we
prove that connective algebraic K-theory is the universal additive invariant,
i.e., the universal functor with values in spectra which inverts Morita
equivalences, preserves filtered colimits, and satisfies Waldhausen's
additivity theorem. Similarly, we prove that non-connective algebraic K-theory
is the universal localizing invariant, i.e., the universal functor that
moreover satisfies the "Thomason-Trobaugh-Neeman" localization theorem.
To prove these results, we construct and study two stable infinity categories
of "noncommutative motives"; one associated to additivity and another to
localization. In these stable infinity categories, Waldhausen's S. construction
corresponds to the suspension functor and connective and non-connective
algebraic K-theory spectra become corepresentable by the noncommutative motive
of the sphere spectrum. In particular, the algebraic K-theory of every scheme,
stack, and ring spectrum can be recovered from these categories of
noncommutative motives.
In order to work with these categories of noncommutative motives, we
establish comparison theorems between the category of spectral categories
localized at the Morita equivalences and the category of small
idempotent-complete stable infinity categories. We also explain in detail the
comparison between the infinity categorical version of Waldhausen K-theory and
the classical definition.
As an application of our theory, we obtain a complete classification of the
natural transformations from higher algebraic K-theory to topological
Hochschild homology (THH) and topological cyclic homology (TC). Notably, we
obtain an elegant conceptual description of the cyclotomic trace map.Comment: Various revisions and correction
Topological Hochschild homology of Thom spectra and the free loop space
We describe the topological Hochschild homology of ring spectra that arise as
Thom spectra for loop maps f: X->BF, where BF denotes the classifying space for
stable spherical fibrations. To do this, we consider symmetric monoidal models
of the category of spaces over BF and corresponding strong symmetric monoidal
Thom spectrum functors. Our main result identifies the topological Hochschild
homology as the Thom spectrum of a certain stable bundle over the free loop
space L(BX). This leads to explicit calculations of the topological Hochschild
homology for a large class of ring spectra, including all of the classical
cobordism spectra MO, MSO, MU, etc., and the Eilenberg-Mac Lane spectra HZ/p
and HZ.Comment: 58 page
Homotopy Theoretic Models of Type Theory
We introduce the notion of a logical model category which is a Quillen model
category satisfying some additional conditions. Those conditions provide enough
expressive power that one can soundly interpret dependent products and sums in
it. On the other hand, those conditions are easy to check and provide a wide
class of models some of which are listed in the paper.Comment: Corrected version of the published articl
A model structure for coloured operads in symmetric spectra
We describe a model structure for coloured operads with values in the
category of symmetric spectra (with the positive model structure), in which
fibrations and weak equivalences are defined at the level of the underlying
collections. This allows us to treat R-module spectra (where R is a cofibrant
ring spectrum) as algebras over a cofibrant spectrum-valued operad with R as
its first term. Using this model structure, we give suficient conditions for
homotopical localizations in the category of symmetric spectra to preserve
module structures.Comment: 16 page
The homotopy theory of dg-categories and derived Morita theory
The main purpose of this work is the study of the homotopy theory of
dg-categories up to quasi-equivalences. Our main result provides a natural
description of the mapping spaces between two dg-categories and in
terms of the nerve of a certain category of -bimodules. We also prove
that the homotopy category is cartesian closed (i.e. possesses
internal Hom's relative to the tensor product). We use these two results in
order to prove a derived version of Morita theory, describing the morphisms
between dg-categories of modules over two dg-categories and as the
dg-category of -bi-modules. Finally, we give three applications of our
results. The first one expresses Hochschild cohomology as endomorphisms of the
identity functor, as well as higher homotopy groups of the \emph{classifying
space of dg-categories} (i.e. the nerve of the category of dg-categories and
quasi-equivalences between them). The second application is the existence of a
good theory of localization for dg-categories, defined in terms of a natural
universal property. Our last application states that the dg-category of
(continuous) morphisms between the dg-categories of quasi-coherent (resp.
perfect) complexes on two schemes (resp. smooth and proper schemes) is
quasi-equivalent to the dg-category of quasi-coherent complexes (resp. perfect)
on their product.Comment: 50 pages. Few mistakes corrected, and some references added. Thm.
8.15 is new. Minor corrections. Final version, to appear in Inventione
- …