We describe the topological Hochschild homology of ring spectra that arise as
Thom spectra for loop maps f: X->BF, where BF denotes the classifying space for
stable spherical fibrations. To do this, we consider symmetric monoidal models
of the category of spaces over BF and corresponding strong symmetric monoidal
Thom spectrum functors. Our main result identifies the topological Hochschild
homology as the Thom spectrum of a certain stable bundle over the free loop
space L(BX). This leads to explicit calculations of the topological Hochschild
homology for a large class of ring spectra, including all of the classical
cobordism spectra MO, MSO, MU, etc., and the Eilenberg-Mac Lane spectra HZ/p
and HZ.Comment: 58 page