8,031 research outputs found

    A physics-based approach to flow control using system identification

    Get PDF
    Control of amplifier flows poses a great challenge, since the influence of environmental noise sources and measurement contamination is a crucial component in the design of models and the subsequent performance of the controller. A modelbased approach that makes a priori assumptions on the noise characteristics often yields unsatisfactory results when the true noise environment is different from the assumed one. An alternative approach is proposed that consists of a data-based systemidentification technique for modelling the flow; it avoids the model-based shortcomings by directly incorporating noise influences into an auto-regressive (ARMAX) design. This technique is applied to flow over a backward-facing step, a typical example of a noise-amplifier flow. Physical insight into the specifics of the flow is used to interpret and tailor the various terms of the auto-regressive model. The designed compensator shows an impressive performance as well as a remarkable robustness to increased noise levels and to off-design operating conditions. Owing to its reliance on only timesequences of observable data, the proposed technique should be attractive in the design of control strategies directly from experimental data and should result in effective compensators that maintain performance in a realistic disturbance environment

    Properties of massive stars in four clusters of the VVV survey

    Full text link
    The evolution of massive stars is only partly understood. Observational constraints can be obtained from the study of massive stars located in young massive clusters. The ESO Public Survey VISTA Variables in the Via Lactea (VVV) discovered several new clusters hosting massive stars. We present an analysis of massive stars in four of these new clusters. Our aim is to provide constraints on stellar evolution and to better understand the relation between different types of massive stars. We use the radiative transfer code CMFGEN to analyse K-band spectra of twelve stars with spectral types ranging from O and B to WN and WC. We derive the stellar parameters of all targets as well as surface abundances for a subset of them. In the Hertzsprung-Russell diagram, the Wolf-Rayet stars are more luminous or hotter than the O stars. From the log(C/N) - log(C/He) diagram, we show quantitatively that WN stars are more chemically evolved than O stars, WC stars being more evolved than WN stars. Mass loss rates among Wolf-Rayet stars are a factor of 10 larger than for O stars, in agreement with previous findings.Comment: paper accepted in New Astronom

    The role of M cells and the long QT syndrome in cardiac arrhythmias: simulation studies of reentrant excitations using a detailed electrophysiological model

    Full text link
    In this numerical study, we investigate the role of intrinsic heterogeneities of cardiac tissue due to M cells in the generation and maintenance of reentrant excitations using the detailed Luo-Rudy dynamic model. This model has been extended to include a description of the long QT 3 syndrome, and is studied in both one dimension, corresponding to a cable traversing the ventricular wall, and two dimensions, representing a transmural slice. We focus on two possible mechanisms for the generation of reentrant events. We first investigate if early-after-depolarizations occurring in M cells can initiate reentry. We find that, even for large values of the long QT strength, the electrotonic coupling between neighboring cells prevents early-after-depolarizations from creating a reentry. We then study whether M cell domains, with their slow repolarization, can function as wave blocks for premature stimuli. We find that the inclusion of an M cell domain can result in some cases in reentrant excitations and we determine the lifetime of the reentry as a function of the size and geometry of the domain and of the strength of the long QT syndrome

    On Lightweight Privacy-Preserving Collaborative Learning for IoT Objects

    Full text link
    The Internet of Things (IoT) will be a main data generation infrastructure for achieving better system intelligence. This paper considers the design and implementation of a practical privacy-preserving collaborative learning scheme, in which a curious learning coordinator trains a better machine learning model based on the data samples contributed by a number of IoT objects, while the confidentiality of the raw forms of the training data is protected against the coordinator. Existing distributed machine learning and data encryption approaches incur significant computation and communication overhead, rendering them ill-suited for resource-constrained IoT objects. We study an approach that applies independent Gaussian random projection at each IoT object to obfuscate data and trains a deep neural network at the coordinator based on the projected data from the IoT objects. This approach introduces light computation overhead to the IoT objects and moves most workload to the coordinator that can have sufficient computing resources. Although the independent projections performed by the IoT objects address the potential collusion between the curious coordinator and some compromised IoT objects, they significantly increase the complexity of the projected data. In this paper, we leverage the superior learning capability of deep learning in capturing sophisticated patterns to maintain good learning performance. Extensive comparative evaluation shows that this approach outperforms other lightweight approaches that apply additive noisification for differential privacy and/or support vector machines for learning in the applications with light data pattern complexities.Comment: 12 pages,IOTDI 201

    Creep motion of a granular pile induced by thermal cycling

    Get PDF
    We report a time-resolved study of the dynamics associated with the slow compaction of a granular column submitted to thermal cycles. The column height displays a complex behavior: for a large amplitude of the temperature cycles, the granular column settles continuously, experiencing a small settling at each cycle; By contrast, for small-enough amplitude, the column exhibits a discontinuous and intermittent activity: successive collapses are separated by quiescent periods whose duration is exponentially distributed. We then discuss potential mechanisms which would account for both the compaction and the transition at finite amplitude.Comment: 4 pages, 5 figures, accepted for publication in Physical Review Letters (05sep08

    Superconducting cascade electron refrigerator

    Full text link
    The design and operation of an electronic cooler based on a combination of superconducting tunnel junctions is described. The cascade extraction of hot-quasiparticles, which stems from the energy gaps of two different superconductors, allows for a normal metal to be cooled down to about 100 mK starting from a bath temperature of 0.5 K. We discuss the practical implementation, potential performance and limitations of such a device

    Spin Hall effect of Photons in a Static Gravitational Field

    Full text link
    Starting from a Hamiltonian description of the photon within the set of Bargmann-Wigner equations we derive new semiclassical equations of motion for the photon propagating in static gravitational field. These equations which are obtained in the representation diagonalizing the Hamiltonian at the order \hbar , present the first order corrections to the geometrical optics. The photon Hamiltonian shows a new kind of helicity-magnetotorsion coupling. However, even for a torsionless space-time, photons do not follow the usual null geodesic as a consequence of an anomalous velocity term. This term is responsible for the gravitational birefringence phenomenon: photons with distinct helicity follow different geodesics in a static gravitational field.Comment: 6 page

    Pulling and Stretching a Molecular Wire to Tune its Conductance

    Full text link
    A scanning tunnelling microscope is used to pull a polythiophene wire from a Au(111) surface while measuring the current traversing the junction. Abrupt current increases measured during the lifting procedure are associated to the detachment of molecular sub-units, in apparent contradiction with the expected exponential decrease of the conductance with wire length. \textit{Ab initio} simulations reproduce the experimental data and demonstrate that this unexpected behavior is due to release of mechanical stress in the wire, paving the way to mechanically gated single-molecule electronic devices
    corecore