37 research outputs found
A mouse-to-man candidate gene study identifies association of chronic otitis media with the loci TGIF1 and FBXO11
Chronic otitis media with effusion (COME) is the most common cause of hearing loss in children, and known to have high heritability. Mutant mouse models have identified Fbxo11, Evi1, Tgif1, and Nisch as potential risk loci. We recruited children aged 10 and under undergoing surgical treatment for COME from 35 hospitals in the UK, and their nuclear family. We performed association testing with the loci FBXO11, EVI1, TGIF1 and NISCH and sought to replicate significant results in a case-control cohort from Finland. We tested 1296 families (3828 individuals), and found strength of association with the T allele at rs881835 (p = 0.006, OR 1.39) and the G allele at rs1962914 (p = 0.007, OR 1.58) at TGIF1, and the A allele at rs10490302 (p = 0.016, OR 1.17) and the G allele at rs2537742 (p = 0.038, OR 1.16) at FBXO11. Results were not replicated. This study supports smaller studies that have also suggested association of otitis media with polymorphism at FBX011, but this is the first study to report association with the locus TGIF1. Both FBX011 and TGIF1 are involved in TGF-beta signalling, suggesting this pathway may be important in the transition from acute to chronic middle ear inflammation, and a potential molecular target.Peer reviewe
Phosphorylation of bamboo mosaic virus satellite RNA (satBaMV)-encoded protein P20 downregulates the formation of satBaMV-P20 ribonucleoprotein complex
Bamboo mosaic virus (BaMV) satellite RNA (satBaMV) depends on BaMV for its replication and encapsidation. SatBaMV-encoded P20 protein is an RNA-binding protein that facilitates satBaMV systemic movement in co-infected plants. Here, we examined phosphorylation of P20 and its regulatory functions. Recombinant P20 (rP20) was phosphorylated by host cellular kinase(s) in vitro, and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and mutational analyses revealed Ser-11 as the phosphorylation site. The phosphor-mimic rP20 protein interactions with satBaMV-translated mutant P20 were affected. In overlay assay, the Asp mutation at S11 (S11D) completely abolished the self-interaction of rP20 and significantly inhibited the interaction with both the WT and S11A rP20. In chemical cross-linking assays, S11D failed to oligomerize. Electrophoretic mobility shift assay and subsequent Hill transformation analysis revealed a low affinity of the phospho-mimicking rP20 for satBaMV RNA. Substantial modulation of satBaMV RNA conformation upon interaction with nonphospho-mimic rP20 in circular dichroism analysis indicated formation of stable satBaMV ribonucleoprotein complexes. The dissimilar satBaMV translation regulation of the nonphospho- and phospho-mimic rP20 suggests that phosphorylation of P20 in the ribonucleoprotein complex converts the translation-incompetent satBaMV RNA to messenger RNA. The phospho-deficient or phospho-mimicking P20 mutant of satBaMV delayed the systemic spread of satBaMV in co-infected Nicotiana benthamiana with BaMV. Thus, satBaMV likely regulates the formation of satBaMV RNP complex during co-infection in planta
Predisposition to Childhood Otitis Media and Genetic Polymorphisms within the Toll-Like Receptor 4 (TLR4) Locus
Background Predisposition to childhood otitis media (OM) has a strong genetic component, with polymorphisms in innate immunity genes suspected to contribute to risk. Studies on several genes have been conducted, but most associations have failed to replicate in independent cohorts. Methods We investigated 53 gene polymorphisms in a Finnish cohort of 624 cases and 778 controls. A positive association signal was followed up in a tagging approach and tested in an independent Finnish cohort of 205 cases, in a British cohort of 1269 trios, as well as in two cohorts from the United States (US); one with 403 families and the other with 100 cases and 104 controls. Results In the initial Finnish cohort, the SNP rs5030717 in the TLR4 gene region showed significant association (OR 1.33, P=.003) to OM. Tagging SNP analysis of the gene found rs1329060 (OR 1.33, P=.002) and rs1329057 (OR 1.29, P=.003) also to be associated. In the more severe phenotype the association was stronger. This finding was supported by an independent Finnish case cohort, but the associations failed to replicate in the British and US cohorts. In studies on TLR4 signaling in 20 study subjects, the three-marker risk haplotype correlated with a decreased TNF alpha secretion in myeloid dendritic cells. Conclusions The TLR4 gene locus, regulating the innate immune response, influences the genetic predisposition to childhood OM in a subpopulation of patients. Environmental factors likely modulate the genetic components contributing to the risk of OM.Peer reviewe
A2ML1 and otitis media : novel variants, differential expression, and relevant pathways
A genetic basis for otitis media is established, however, the role of rare variants in disease etiology is largely unknown. Previously a duplication variant within A2ML1 was identified as a significant risk factor for otitis media in an indigenous Filipino population and in US children. In this report exome and Sanger sequencing was performed using DNA samples from the indigenous Filipino population, Filipino cochlear implantees, US probands, Finnish, and Pakistani families with otitis media. Sixteen novel, damaging A2ML1 variants identified in otitis media patients were rare or low-frequency in population-matched controls. In the indigenous population, both gingivitis and A2ML1 variants including the known duplication variant and the novel splice variant c.4061 + 1 G>C were independently associated with otitis media. Sequencing of salivary RNA samples from indigenous Filipinos demonstrated lower A2ML1 expression according to the carriage of A2ML1 variants. Sequencing of additional salivary RNA samples from US patients with otitis media revealed differentially expressed genes that are highly correlated with A2ML1 expression levels. In particular, RND3 is upregulated in both A2ML1 variant carriers and high-A2ML1 expressors. These findings support a role for A2ML1 in keratinocyte differentiation within the middle ear as part of otitis media pathology and the potential application of ROCK inhibition in otitis media.Peer reviewe
Antiviral Silencing and Suppression of Gene Silencing in Plants
RNA silencing is an evolutionary conserved sequence-specific gene inactivation mechanism that contributes to the control of development, maintains heterochromatin, acts in stress responses, DNA repair and defends against invading nucleic acids like transposons and viruses. In plants RNA silencing functions as one of the main immune systems. RNA silencing process involves the small RNAs and trans factor components like Dicers, Argonautes and RNA-dependent RNA poly- merases. To deal with host antiviral silencing responses viruses evolved mecha- nisms to avoid or counteract this, most notably through expression of viral suppressors of RNA silencing. Due to the overlap between endogenous and antiviral silencing pathways while blocking antiviral pathways viruses also impact endogenous silencing processes. Here we provide an overview of antiviral silencing pathway, host factors implicated in it and the crosstalk between antiviral and endogenous branches of silencing. We summarize the current status of knowledge about the viral counter-defense strategies acting at various steps during virus infection in plants with the focus on representative, well studied silencing suppres- sor proteins. Finally we discuss future challenges of the antiviral silencing and counter-defense research field