1,851 research outputs found

    On the birational section conjecture with local conditions

    Full text link
    A birationally liftable Galois section s of a hyperbolic curve X/k over a number field k yields an adelic point x(s) in the smooth completion of X. We show that x(s) is X-integral outside a set of places of Dirichlet density 0, or s is cuspidal. The proof relies on GL2(Fℓ)GL_2(F_\ell)-quotients of π1(U)\pi_1(U) for some open U of X. If k is totally real or imaginary quadratic, we prove that all birationally adelic, non-cuspidal Galois sections come from rational points as predicted by the section conjecture of anabelian geometry. As an aside we also obtain a strong approximation result for rational points on hyperbolic curves over Q or imaginary quadratic fields.Comment: Theorem C (and Section 7) of the original version have been deleted due to a gap in the proof. This is the journal versio

    Results of special mechanical analyses of Luna 16 material

    Get PDF
    The studies carried out on the Luna 16 regolith have confirmed the data that were already published internationally. By means of activation analysis under irradiation in the reactor, activation analysis with a 14 MeV U-generator, and mass spectroscopy on samples of 10 or 20 mg, six main and 63 trace elements were quantitatively determined and compared with known data

    Wind turbine generator interaction with conventional diesel generators on Block Island, Rhode Island. Volume 2: Data analysis

    Get PDF
    Assessing the performance of a MOD-OA horizontal axis wind turbine connected to an isolated diesel utility, a comprehensive data measurement program was conducted on the Block Island Power Company installation on Block Island, Rhode Island. The detailed results of that program focusing on three principal areas of (1) fuel displacement (savings), (2) dynamic interaction between the diesel utility and the wind turbine, (3) effects of three models of wind turbine reactive power control are presented. The approximate two month duration of the data acquisition program conducted in the winter months (February into April 1982) revealed performance during periods of highest wind energy penetration and hence severity of operation. Even under such conditions fuel savings were significant resulting in a fuel reduction of 6.7% while the MOD-OA was generating 10.7% of the total electrical energy. Also, electrical disturbance and interactive effects were of an acceptable level

    Wind turbine generator interaction with conventional diesel generators on Block Island, Rhode Island. Volume 1: Executive summary

    Get PDF
    Primary results are summarized for a three-part study involving the effects of connecting a MOD-OA wind turbine generator to an isolated diesel power system. The MOD-OA installation considered was the third of four experimental nominal 200 kW wind turbines connected to various utilities under the Federal Wind Energy Program and was characterized by the highest wind energy penetration levels of four sites. The study analyses address: fuel displacement, dynamic interaction, and three modes of reactive power control. These analyses all have as their basis the results of the data acquisition program conducted on Block Island, Rhode Island

    Resolution and Efficiency of the ATLAS Muon Drift-Tube Chambers at High Background Rates

    Full text link
    The resolution and efficiency of a precision drift-tube chamber for the ATLAS muon spectrometer with final read-out electronics was tested at the Gamma Irradiation Facility at CERN in a 100 GeV muon beam and at photon irradiation rates of up to 990 Hz/square cm which corresponds to twice the highest background rate expected in ATLAS. A silicon strip detector telescope was used as external reference in the beam. The pulse-height measurement of the read-out electronics was used to perform time-slewing corrections which lead to an improvement of the average drift-tube resolution from 104 microns to 82 microns without irradiation and from 128 microns to 108 microns at the maximum expected rate. The measured drift-tube efficiency agrees with the expectation from the dead time of the read-out electronics up to the maximum expected rate

    Large-Eddy Simulation of inhomogeneous canopy flows using high resolution terrestrial laser scanning data

    Get PDF
    The effect of sub-tree forest heterogeneity in the flow past a clearing is investigated by means of large-eddy simulation (LES). For this purpose, a detailed representation of the canopy has been acquired by terrestrial laser scanning for a patch of approximately 190m length in the field site “Tharandter Wald”, near the city of Dresden, Germany. The scanning data are used to produce a high resolution plant area distribution (PAD) that is averaged over approximately one tree height (30m) along the transverse direction, in order to simplify the LES study. Despite the smoothing involved with this procedure, the resulting two-dimensional PAD maintains a rich vertical and horizontal structure. For the LES study, the PAD is embedded in a larger domain covered with an idealized, horizontally homogeneous canopy. Simulations are performed for neutral conditions and compared to a LES with homogeneous PAD and recent field measurements. The results reveal a considerable influence of small-scale plant distribution on the mean velocity field as well as on turbulence data. Particularly near the edges of the clearing, where canopy structure is highly variable, usage of a realistic PAD appears to be crucial for capturing the local flow structure. Inside the forest, local variations in plant density induce a complex pattern of upward and downward motions, which remain visible in the mean flow and make it difficult to identify the “adjustment zone” behind the windward edge of the clearing

    Large-Eddy Simulation Study of the Effects on Flow of a Heterogeneous Forest at Sub-tree Resolution

    Get PDF
    Abstract The effect of three-dimensional plant heterogeneity on flow past a clearing is investigated by means of large-eddy simulation. A detailed representation of the canopy has been acquired by terrestrial laser scanning for a patch of approximately 328m length and 172m width at the field site “TharandterWald”, near the city of Dresden, Germany. The scanning data are used to produce a highly resolved, three-dimensional plant area distribution representing the actual canopy. Hence, the vegetation maintains a rich horizontal and vertical structure including the three-dimensional clearing. The scanned plant area density is embedded in a larger domain, which is filled with a heterogeneous forest generated by the virtual canopy generator of Bohrer et al. (Tellus B 59:566–576, 2007). Based on forest inventory maps and airborne laser scanning, the characteristics of the actual canopy are preserved. Furthermore, the topography is extracted from a digital terrain model with some modifications to accommodate for periodic boundary conditions. A large-eddy simulation is performed for neutral atmospheric conditions and compared to simulations of a two-dimensional plant area density and an one-year-long field experiment conducted at the corresponding field site. The results reveal a considerable influence of the plant heterogeneity on the mean velocity field as well as on the turbulent quantities. The three-dimensional environment, e.g., the oblique edges combined with horizontal and vertical variations in plant area density and the topography create a sustained vertical and cross-flow velocity. Downstream of the windward forest edge an enhanced gust zone develops, whose intensity and relative position are influenced by the local canopy density and, therefore, is not constant along the edge. These results lead us to the conclusion that the usage of a three-dimensional plant area distribution is essential for capturing the flow features inside the canopy and within the mixing layer above

    SCIAMACHY lunar occultation water vapor measurements : retrieval and validation results

    Get PDF
    SCIAMACHY (SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY) lunar occultation measurements have been used to derive vertical profiles of stratospheric water vapor for the Southern Hemisphere in the near infrared (NIR) spectral range of 1350–1420 nm. The focus of this study is to present the retrieval methodology including the sensitivity studies and optimizations for the implementation of the radiative transfer model on SCIAMACHY lunar occultation measurements. The study also includes the validation of the data product with the collocated measurements from two satellite occultation instruments and two instruments measuring in limb geometry. The SCIAMACHY lunar occultation water vapor measurement comparisons with the ACE-FTS (Atmospheric Chemistry Experiment Fourier Transform Spectrometer) instrument have shown an agreement of 5% on the average that is well within the reported biases of ACE in the stratosphere. The comparisons with HALOE (Halogen Occultation Experiment) have also shown good results where the agreement between the instruments is within 5 %. The validations of the lunar occultation water vapor measurements with MLS (Microwave Limb Sounder) instrument are exceptionally good, varying between 1.5 to around 4 %. The validations with MIPAS (Michelson Interferometer for Passive Atmospheric Sounding) are in the range of 10 %. A validated dataset of water vapor vertical distributions from SCIAMACHY lunar occultation measurements is expected to facilitate the understanding of physical and chemical processes in the southern midlatitudes and the dynamical processes related to the polar vortex

    Partially and Fully Frustrated Coupled Oscillators With Random Pinning Fields

    Full text link
    We have studied two specific models of frustrated and disordered coupled Kuramoto oscillators, all driven with the same natural frequency, in the presence of random external pinning fields. Our models are structurally similar, but differ in their degree of bond frustration and in their finite size ground state properties (one has random ferro- and anti-ferromagnetic interactions; the other has random chiral interactions). We have calculated the equilibrium properties of both models in the thermodynamic limit using the replica method, with emphasis on the role played by symmetries of the pinning field distribution, leading to explicit predictions for observables, transitions, and phase diagrams. For absent pinning fields our two models are found to behave identically, but pinning fields (provided with appropriate statistical properties) break this symmetry. Simulation data lend satisfactory support to our theoretical predictions.Comment: 37 pages, 7 postscript figure
    • …
    corecore