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SUMMARYAND CONCLUSIONS

This report summarizes the primary results of a three-part study involving

the effects of connecting a MOD-OAwind turbine generator to an isolated

diesel power system. The subject utility is that owned and operated by the

Block Island Power Company (BIPCO). The MOD-OAinstallation here was the

third of four experimental nominal 200 kW wind turbines connected to various

utilities under the Federal Wind Energy Program. The BIPCO installation was

characterized by the highest wind energy penetration levels of the four sites

and, as such, was adjudged the best candidate for conducting the data

acquisition and analysis effort that is the subject of this study.

The three-phases of the study analysis address: 1) fuel displacement,

2) dynamic interaction, and 3) three modes of reactive power control. These

analyses all have as their basis the results of the data acquisition program

conducted during 1982 from February into April on Block Island, Rhode Island.

The major conclusions of the study are as follows.

Phase I - Fuel Study

• The rate of fuel displacement by the experimental MOD-OAon Block

Isiand is equal to the incremental fuel consumption rate of the

diesel unit on load frequency control.

• Diesel engine throttle activity resulting from wind gusts which

change the wind turbine output does not significantly influence
fuel consumption.

• The MOD-OAwind turbine on Block Island, Rhode Island displaced

25,700 Ibs. of the diesel fuel during the test period, representing

a calculated reduction in fuel consumption of 6.7% while generating
11% of the total electrical energy.
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Phase II - Dynamic Interaction

• Power and voltage transients due to MOD-OAnormal startup
and shutdown were of insignificant magnitude as were the
cyclic power variations due to the tower-shadow effect.

• MOD-OA power fluctuations under fixed pitch operation
were compensated for by the diesel governor control
resulting in system frequency and voltage variations no
greater than present without the MOD-OA.

• MOD-OAoperation under variable pitch (constant power)
control showed an increased amplitude low frequency
oscillation (.9 rad/s) that was still within acceptable
limits. Linear analysis demonstrated the oscillation
amplitude was reducible by changes in diesel governor and
blade pitch control settings.

Phase III - Reactive Power Control

• No significant differences in frequency or voltage
behavior were found among any of the three control modes.
A simulation study indicated that constant power factor
control provided the best transient stability and
constant voltage control the least.

• The low frequency reactive var component caused by the
combination of the MOD-OA, system load and wind dynamics
was found to flow from generators under constant voltage
control to those under either fixed field or constant
power factor control.

• Constant var control was preferred because of its ability
to provide a smooth source of reactive power and still
exhibit good transient stability.

Overall Study Conclusion

In terms of fuel savings, the acceptability of the dynamics interaction

effects observed and the sufficiency of the excitation control, it is

concluded that wind turbine generation is an acceptable option even

under adverse isolated utility operating conditions.
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1.0 BLOCKISLAND UTILITY AND SITE CHARACTERISTICS

1.1 Load Characteristics

During the three months data-gathering effort, the Block Island Power

Company (BIPCO) was in the winter configuration wherein only two diesel

units were in operation -- normally one on fixed throttle and the other

governor controlled. A typical weekly power demand curve is the

following.
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As seen, the minimum load extends down to 250 kW so that for the 150 EW

MOD-OArating, the wind power penetration is some 60%.

1.2 Operational Considerations

The following operational constraints were applied to the BIPCO system.

1. Nominal MOD-OArating of 200 kW (at 40 rev/min) was
reduced to 150 kW (at 31.5 rev/min) so that overall
energy capture was maximized for the particular wind
regime on Block Island.



2. WTGturned off from 12:00 a.m. to 8:00 a.m. to avoid
operating governed diesel near zero load which because of
low engine temperature would risk damaqe fire due to oil
accumulation in exhaust stack.

3. Utilization of WTG power restricted because of
operational constraints unique to BIPCO utility.

1.3 Data Acquisition

Some 40 variables were recorded on magnetic FM tape with 8 of these

going to an on-line strip chart recorder for immediate monitoring.

Digital processing was also part of the overall operation. A pictorial

broadly describing the data acquisition system appears below:
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2.0 ENERGYCONVERSIONANALYSIS

Quantifying the effective fuel displacement (savings) due to MOD-OA

operation is the principal objective of this analysis. Beginning with

an analysis of prospective factors affecting fuel displacement, each is

evaluated in terms of the results provided by the data analysis.

2.1 Prospective Fuel Displacement Properties of the WTG

Three major postulated factors that determine the difference between

fuel displaced based on gross wind turbine electrical output power and

the actual fuel displaced are given by the following pie chart.

Cumpletecircle
equalsfuel
t'onsumptiou
withouttke
wind turbine.

The most obvious of these components is the "efficiency" segment which

naturally must be non-zero. The designation "auxiliaries" relates to

the fact that the yaw control motor and fans consume power. "Throttle

motion" is an efficiency component which theorizes that rapidly

fluctuating diesel throttle operation will be less efficient than

constant or slowly varying throttle operation.



2.2 Diesel Efficiency Characteristics

Measurement of fuel mass flow rate vs. electrical power output on a 15

minute average basis yields for the three diesel units"
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This observed linear characteristic -- fuel flow = incremental fuel flow

x kW + idle fuel flow is converted to a diesel efficiency characteristic

given by:

Efficiency = kWhoutput
time x idle fuel flow + kWh x incremental fuel flow



The diesel efficiency resulting are shown below:
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2.3 Throttle Activity Effects

Wind power variations translate to corresponding throttle variation on

the governor controlled diesel(s). A measure of increased fuel

consumption vs. throttle speed using a .5 second interval between data

points produces:
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This plot, which surveys a 15-minute period of operation, is typical of

other intervals examined and, as such, points out the fact that throttle

activity is not a significant factor in fuel displacement.

2.4 Actual Fuel Displacement Result

The incremental fuel efficiencies of the particular diesel unit dictate

the degree of fuel displacement. The results using diesel unit #9 show

an incremental fuel consumption rate of .49 Ibs. of fuel per kWh of net

wind turbine power, while for #i0 it is .57 Ibs. per kWh.

The summary for unit #9 is given by the following table.

FUELDISPLACEMENTRESULTSFORTEST PERIOD

1) diesel unit (unit #9) incremental 0.49 Ibs. fuel/kWh
fuel consumption

2) gross MOD-OAwind turbine energy 56,900 kWh

3) MOD-OAwind turbine auxiliary energy 4,470 kWh

4) displaced fuel (line 2- line 3) x 25,700 Ibs. (3560 gal )line 1

5) gross energy generated (diesel and 496,000 kWh
wind turbine)

6) total fuel burned 358,000 Ibs. (49,800 gal.)

During the test period, the MOD-OAwind turbine generated 10.7% of the

system electrical energy requirement and reduced fuel usage by 6.7%.
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3.0 DYNAMICINTERACTION

Identifying and quantifying any abnormal dynamic behavior when the

MOD-OAWTGwas connected to the Block Island utility is the principal

objective of the analysis. Because of the high level of WTGpenetration

(up to 60%), the measured efforts are representative of the worst that

would be expected on such a typical isolated diesel utility system.

3.1 Modes of Operation Examined for Dynamic Interaction

The four modes are:

1. Startup and synchronization: Variable blade pitch angle

is controlled to bring wind alternator speed and angle to

within desired limits so that closing in the breaker to

the utility will result in acceptable voltage,

frequency/power disturbances.

2. Shutdown and cutout: There are several types within this

mode - (i) normal, (2) emergency, (3) critical. All have

the function of removing the WTGfrom the utility. The

first and second do it by initially ramping the WTGpower

to zero after which the breaker is opened (minimizing

system disturbances), while, for the third, brakes are

applied to the WTGand the breaker is opened immediately.

3. Fixed pitch operation: Rotor blades have an inclination

from horizontal (pitch) so that maximum wind energy is

converted -- blade pitch controller dynamics are absent.

4. Variable pitch (constant power) operation: Blade pitch

controller dynamically controlling to an average power

setpoint -- blade pitch controller dynamics are present.



3.2 Results of Dynamic Interaction Data MeasurementAnalysis

BIPCO Dynamic Characteristics without WTG

In combination with typical Block Island customer load variations, the

governor control characteristics and diesel generator dynamics of those

units used over the test period (#9 and #I0) yield a fluctuating power

system frequency illustrated in the following figure:
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The major frequency component visible here is about 1 rad/s.
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The preceding figure shows the following sequence of events: (1) blade

pitch angle being varied to bring generator up to nominal speed, (2)

tie-breaker closing (synchronizing) when microprocessor senses speed/-

phase requirement meet, (3) ramp up of WGpower by changing pitch angle.

The wind tower shadow effect is visible as a 6.6 rad/s variation and it

is seen that the diesel governor control is compensating for this

component as well as the low frequency wind induced variation.

Dynamic Behavior During Shutdown and Cutout

10



In the preceding figure the event sequence shown is: (1) fixed blade

pitch operation followed by variable pitch due to sizable wind gust, (2)

microprocessor signals shutdown and blade pitch ramped down bringing WTG

power to zero at which time the tie-breaker opens.

Dynamic Interaction During Fixed Pitch Mode
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The preceding figure is an example of how system frequency behaves when

the WTGblade pitch is fixed. Both the fluctuational load character-

istics of BIPCO system and wind gust activity produce the frequency
variations observed.

Dynamic Interaction During Variable Pitch (Constant Power) Mode

Variable blade pitch control exists over this interval. Low frequency

oscillation of .9 rad/s is visible and is not correlated with wind

profile thereby suggesting blade pitch control is either giving rise to

or amplifying this component.

12



3.3 Linear Modelin 9 Analysis

By means of a simple linearized model, the primary mechanism involved in

the production/amplification of the low frequency component is identi-

fied. The starting point conceptual model is shown on the left below

with the resulting operational transfer functions on the right:
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The responses to a step in wind power for several parametric changes to
the model appear as follows:

100

FZXEDPIT_

8O

I'1
PITCH CONTROL(ZNFINZTEBUS)o \_.

D 60

0
A

4 0 PITCHCO_ITRO-
P
0
W " \

E 20 • \ PITCHCONTROL
R \

f
k 0 ''--
W \ / _- --

\ //
\ /

-20 \ z

-40

0 1 2 3 4 5 6 7" 8 9 I0 11 12 13 14 15

TIME SECONDS

From the parameters given in the block diagram, it is seen that with

pitch control active, the response is underdamped with a natural

frequency corresponding to that in the data (approximately .9 rad/s).

Shown also is the potential improvement when the programmed pitch

proportional and integral control constants are multiplied by a factor
of 8 and .4, respectively.
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4.0 REACTIVEVOLT-AMPEREREGULATIONMODES

Evaluating the effects of three methods of reactive power control (wind

alternator field excitation control) is the primary purpose of this

phase of the analysis. The solid-state regulator which drives a

brushless exciter was adjustable to produce one of three control modes:

(1) constant var, (2) constant power factor (PF), or (3) constant

terminal voltage. The resulting configuration appears in the following

figure :

WN) TUnSI_ UI_IT DCES[L
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4.1 Basic Characteristics of Each Type of Control

1. Constant var - maintains a fixed value of reactive power

out of WT alternator so as to provide synchronism and

avoid an excessive lowering of the utility system

voltage.

2. Constant PF - causes the WTGto appear electrically as a

negative constant impedance load; normally has a higher

synchronism capability than constant var method; voltage

regulation poorest of three methods.

3. Constant voltage - synchronism capability worst of three

methods; voltage regulation best of three.

4.2 Results of Data Measurement Analysis

Little difference was observed with regard to the effect on system

voltage and frequency behavior among any of the three methods, making

any of them usable insofar as the Block Island installation was con-

cerned.
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The following figure illustrates a significant phenomenon that

interrelates the dynamic reactive power behavior among the diesel

generators and WTG:
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Here, the WTGis under constant var control, diesel unit #9 has governor

control and constant voltage regulation, unit #8 has fixed throttle and

fixed excitation. The oscillatory component is the nominal .9 rad/s

that dominates under blade pitch control. It is seen that the constant

var control and the WTGis quite effective in dynamically maintaining

constant vars. The variational var requirement on the controlled diesel

is increased because of the non-controlled diesel -- the latter appear-

ing as an inductive load (var sink) to the variational component even

though it is a steady-state var source.

When the MOD-OAalternator is being excited using constant power factor

control, the following figure shows that it, like diesel unit #8, is

absorbing the variational component by vars:
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Under constant voltage control, the WTGand controlled diesel reactive

power variational components are in phase as shown in the following

figure:
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4.3 Simulation Model Analysis

The dynamic simulation of the WT alternator and the three methods of

excitation was undertaken to enable a quantitative comparison of

performance and also as a check to insure that no parasitic

instabilities might exist which were possibly masked in the data

measurement. The following figure shows the system simulated with the

control parameters given:
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Shown below are the system angle and terminal voltage responses to a

wind torque step applied to the model. These confirm the inherent

behavior of the three types of control and show some of the higher order

dynamic effects,
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APPENDIX

In order to disseminate the results contained in this study (Volume II) and,

in particular, make them more readily assimilable to the utility industry,

the following three papers, each addressing one phase of the investigation,

were written and presented at consecutive IEEE Power Engineering Society
meetings.

1. "Measured Effect of Wind Generation on the Fuel Consumption of an

Isolated Diesel Power System," by P. H. Stiller, G. W. Scott, and

R. K. Shaltens. IEEE Transactions on Power Apparatus and Systems,
Vol. PAS-I02, pp. 1788-1792, June, 1983.

2. "Wind Turbine Generator Interaction with Diesel Generators on an

Isolated Diesel System," by G. W. Scott, V. F. Wilreker, and R. K.

Shaltens. 1983 IEEE SummerPower Meeting, Paper #83SM329-0.

3. "Measured Effects of Wind Turbine Reactive Power Control on an

Isolated Utility," by R. F. Smith, V. F. Wilreker, and R. K.

Shaltens. 1984 IEEE Winter Power Meeting, Paper #84WM056-8.

A fourth paper, integrating and summarizing the information in the three IEEE

papers was presented at the 1984 American Power Conference. Copies of the

IEEE papers may be found on the following pages. Since the American Power

Conference paper was a summary paper containing essentially the same

information as the preceding Executive Summarytext, it is not included in

this appendix.
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MEASURED EFFECT OF WIND GENERATION ON THE FUEL CONSUMPTION
OF AN ISOLATED DIESEL POWER SYSTEM

P. H. Stiller G.W. Scott R.K. Shaltem
Member, IEEE Member, IEEE

Advanced Systems Technology NASA Lewis ReJearch Center
Weginghouse Electric Corporation Cleveland, Ohio

Pittsburgh, PA

Abstr_ - The Block Island Power Company (BIPCO), on The objective of this fuel usage investigation was to quami-
Block _Rhode Island, operates an isolated electric power fy the influence of the wind turbine on diesel fuel consumption by
systemconsistingof dieselgenerationmadan experimentalwind determiningtheamountof fueldisplacedby_findenergyInorder
turbine. The 150-kW wind turbine, designated MOD-OA by the to meet this objective, a complete instrumentation and data
U.S.Departmentof Energyis typicallyoperatedin parallelwith recordingpackagewasinstalledon threeBIPCOdieselgenerators
two dieselgeneratorsto servean averagewinterloadof 350 kW. to monitorfuelflowrate, throttlepositionand variouselectrica_
Windgenerationservesup to 60%of the systemdemanddepend- parametersincludinggeneratorpoweroutput. Datafromthediesel
ing on wind speedand total systemload. Resultsof dieselfuel mstrumentatmnwere simultaneouslyrecordedwith data from
consumptionmeasurementsaregivenforthe dieselunitsoperated the wind turbineto study the influenceof the windturbineon
in parallelwith the wind turbineand again without the wind fuel consumption.
turbine.The fuel consumptiondata are used to calcahte the
amountof fueldisplacedby windenergy.Resultsindicatethat the Four (4) factorsmay influencediesel fuel consumption
wind turbinedisplaced25,700 lbs. of the dieselfuel duringthe duringparalleloperation:
testperiod,representinga calcuhtedreductionin fuelconmmption
of 6.7%whilegenerating11%of the total electricalenergy.The 1) grosswindturbineoutput
amount of displacedfuel dependson operatingconditionsand 2) windturbineauxiliaries
systemload. It is also shownthat dieselenginethrottleactivity 3) change in dies'elefficiencydue to changein dieselload
resultingfrom windgustswhichrapidlychangethe windturbine 4) reduceddieselefficiencydueto throttleactivity
outputdonot significantlyinfluencefuelconsumption.

Gross wind turbine output reducesoveralldiesel fuel
INTRODUCTION conramptionby contributingelectricalenergywithoutusingfuel

asillustratedin Figure1.
The FederalWindEnergyProgramwasestablishedto enable

researchanddevelopmenton variousapplicationsof windenergy Windturbineauxiliariesincludingcontrols,instrumentation,
systems.The programwas originallyadministeredbythe National heating and airconditioningincreasedieselfuelconsumptionb\'
ScienceFoundationand is currentlydirectedand fundedby the using electricalenergythat wouldotherwiseserveutility custom-
U.S.Departmentof Energy.One phaseof the programinvolves ers.Auxiliaryenergycanbe subtractedfromthegrossoutput and
the design, fabrication, and experimentaloperation of large the resultconsideredasthe net windturbineoutput.
horizontalaxiswindturbines.Thispart of the programismanaged
by the LewisResearchCenter of the NationalAeronauticsand Dieselefficiencyunder steadystateconditionsis primarilya
SpaceAdminimation.The first wind turbinegeneratorsto be functipn of load. Diesel engines are more efficient at higl_er
placed into utility operation under this program1 were four, loads._ Increasedwind generationdrivesdieseloutput down,
200-kWhorizontalaxismachinesdesignatedMOD-O_.AMOD-OA causingthe dieselto operateat lowerefficiencyand tendingto
machinewasinstalledonBlockIsland,RhodeIslandZinmid-1979, increasespecificfuelconsumptionas showninFngure1.
and wasmodifiedfor l$O-kWmaximumoutputinOctober,1980.
The experimentalwindturbinewas operateduntil June,1982in
parallelwith existing dieselgenerationowned by Block Island , _
PowerCompany(BIPCO).

rcttIOSP'LICtD
Thepurposeof the MOD-OAexperimentalinRallationwas \ / IISIDONCnOS$to obtain earlyoperationand performancedata while gptining lINDTUIIIN[OUtPUt

experiencein the operation of a large windturbinein various
utility environments.TheBlockIslandinstallationrepresentsthe
highestwind penetrationof adlMOD-OAsiteswithwindgenera-
t/onservingupto 60%of the total systemdemand. ' " hmplll+tittle

_k ktl
€I4114_I_ii

lH|ld lh
wiN4l_rb+N.

F_ I - FuelDisplacedby WindTurbine
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Wind gusts cause rapid wind turbine output fluctuations FIELDMEASUREMENTS
which are compensated by diesel output changes to hold constant
frequency. Rapid or extreme dieselthrottle variationscanincrease The BIPCO diesel generators (units #8, 9, and 10) and
fuel consumption by degrading diesel efficiency. This is also MOD-OA wind turbine were instrumented for unattended data
illumated in Figure1. collection for a period of two months duringthe winter. Informa-

tion about each of the diesel units was simultaneously recorded
Overall influence of the wind turbine on fuel consumption with wind turbine data on magnetic tape. Selected analog signals

is determined by quantifying the four (4) factors to establish net were also monitored with a strip chart recorder.Tapes and strip
displacedfuel. Thisquantity may be positive or negative, charts were then returned from the field for cataJoguingand

analysis.
BIPCO is an investor-owned electric utility which serves

Block Island, Rhode Island. BIPCOis not electrically intercon- Instrumentation
nected to any other utility. Majorcharacteristicsof the BIPCO
gystemaresummarizedin Table 1. An instrumentation package was installed on each of

three (3) dieselgeneratorsused duringthe test period (units #8.9,
Table 1 10) end the MOD-OAturbine generator.Transducers converted

measurements to analog signals. The data were recorded on
BIPCOGenerationandPeak Load magnetic tape using the DOE/NASAEngineeringData Acquisition

System"as shown in Figure2. This recordingsystem also includes
Peakload (summer 1981) 1,800 kW strip chart monitors for selected channels. Quantities measured

(winter 1981) 450 kW and recordedaresummarizedin Table 3 and Table4.

Active Generation Capacity
(summer) unit #9 400 kW

#11 1,140 kW
#12 1,000 kW

(winter) unit #8 225 kW
#9 40O kW
#10 $00 kW BIT[HI)LOgICAL

i_-Ol IIW[I ll[$[t

The principal economic base on Block Island is summer
tourism. In 1982 there were 611 winter residents,engagingmainly
in maintenance and construction for the summer season. Other
activities include support of the labor force (restaurants, hotels)
and some fishing.There is no heavy industry,so the electrical load g_
is residential and commercial.

I

Electrical energy consumption during the winter months TRANSDUCERS[
peaks in the morning and evening at 450 kW.Minimum winter
load occurs during early morning hours (2-4 aJr,.) and was ob- '4_
servedto be 260 kW.The study was conducted duringthe winter

BIPCO usually operates two diesel generators in parallel UNITS
with the 150-kWMOD-OA wind turbine. This typically includes
unit #8, a 225-kWdiesel generator and unit #9, • 400-kWdiesel '4_

generator. A 500-kWdiesel generator (unit #10) is sometimes run
m place of unit #9. The wind turbine is operated aswind is avail- WJOi"BAND ] lte[

able. Typical unit ioadings areghtenin Table 2. _ I_ DIRECT _ Ittltll0ll

a_.__z_..J "v

RECORDERTabk2

Rang Low Wind HighWind

dieselumt #8 225 kW IO0kW 100 kW
400 225 100

#I0 500 0 0 STlllOtit| STtT)St_Ctt
MOD-OAWT 150 25 150 gllSTOlllliOtllttt$1s
System load 350 350

Unit #8 is run with constant throttle position (ungove_,ned)
resuhing in constant power output. Unit #9 maintains system
frequency with a speed governor and also controls bus voltage
with an active voltage regulator. Changes in wind turbine output
are replaced by unit #9 output. The MOD-OAexperimental wind
turbine is automatically controlledby a microprocessorto gener- Fg_ure2 -DOE/NASA EngineeringData
atepower to a preset limit as wind is available. Acquisition System
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Table3

QuantitiesMeasuredandRecordedfor $ I_R 1400ih,/hr
theW_! Turb_ FLOW!

LO I0man
PsreJneter Units

realpower kilowatts $ [300kW

reactivepower idlovars POWER[ £phase current _nperes 0
phasepotential volts
elecu_calfrequency hertz
bhdepitchangle degrees 9 _EL 1"400Ibs./hr
romio_speed rpm FLOW/_
nacelle direction degrees L_
yaw torque N .m
yaw error degrees -500 kW

blade bending movement N .m 9 __
wind speed at hub mlsec POWER _wind speed at tower
(30', 1OO', 150') mlsec

WIND 1"250kW

Quamdties Measured and Recorded for 9 500

eachDieselGenerator TH_TILE[_ ...__..__
Pzrarneter Units ROTATION

real power kilowatts 8 500

reactivepower kflovars _ROTTL[_[0
phase current amperes
line potential volts ROTATION
field current amperes (de)
field potential volts (de)
electricalfrequency hertz rSl H!

I_ r-x,.. ,t""Lt%.,..+ ..s--|,,,_*. .... ,

fuelmassflowrate Ibm/hour FR[Q. l_,.._,++_,.,-....-...,p_;.,.,.¢...,+,,.-_:,_,,...,i_._.,,,aldiesel throttle position degrees
"59Hz

Procedure Figure3 - Sample Strip ChartRecord

Data were continuously collected on diesel and wind
turbine operationfor two months. The informationwas automat-
ically recorded with the exception of manual sm-ipchart and DieselUnitInput/OutputCharacteristics
magnetic tape changes for a few minutes every three days. A
typical stripchart record is shown in Figure 3. Selected channels Duringthe two-month testing period, three dieselunits were
were recorded on the strip chart for monitoring purposes. A utilized by BIPCO.Input/output curveswere developedfor each
complete analog recordwas madeon the magnetic tape. unit by measuring fuel input for various constant levelsof power

output while the unit was based loaded. Input/output curvesfor
During the test period, BIPCO personnel cooperated by each unit are given in Figure4 based on a fifteen minute average

shifting responsibility for load frequency control to variousdiesel of input and output to account for smallvariations about the set
units. This allowedcollection of operating data for each diesel in point. The locus of input/output points for each diesel can be
base load and in frequency control modes. In base loadoperation, described by a straight line with reasonableaccuracy. The input/
the diesel engine throttle does not change position. Under load output curves for each diesel were then converted to efficiency
frequency control, the engine throttle moves continuously in curves by dividingoutput by input over the dieseloperatin,_range.
order to maintain system frequency.This comparisonis important Efficiency characteristics for each diesel are given in F,g'ure5.
because the influence of throttle activity on fuel consumptionis
one factor to be evaluated. IncrementalFuelConsumption

As the wind turbine increasespower output, each kilowatt
of wind generation replacesa kilowatt of diesel generation.The

ANALYSIS amount of fuel displaced is determined by the slope of the diesel
input/output characteristic having units of lbs. of fuel per hour

The objective of this analysis was to determinethe amount per kilowatt. The slope of each line shown in Fig. 4 is givenin
of diesel fuel displaced by the MODOA wind turbine on Block Table 5. This slope, the incrementalfuel consumption,was found
Island.The DOE/NASA EngineeringData Acquisition System was to be essentially constant for the diesel units under test. The
used to collect a comprehensivedata base capable of supporting change in diesel output (equal to the change in wind turbine
severaldifferent analyses, output) multiplied by the incremental fuel consumption yields

the displacedfuel.
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' iU Throttle position, in degrees of rotation, was continuously
' ' ' ' ' ' ' recordedforthedieselunitonloadfrequencycontrolBIPCO

typically has two diesel units on line with only one of the _'o
regulatingfrequency.Theremainingunitholdsconstantthrottle
position.Throttleactivitywasthen quantifiedbycomputingtotal

_1 1_ angulartravelovera time intervalanddividingby the intervalof

Ins d_se!,,-itI| * time. Since both directionsof travelare taken as positive,ther,_ computedparameterbecomesaveragethrottleangularspeed,thus
•-t,TM providinga measureof throttleactivity.

-_ IS0 Fuel consumptionforeach dieselwasexaminedas afunc-
tion of throttle activity.A summaryof this analysisis givenin

100 e,,_,v 8a._,_ Figure6. Note that only units 9 and 10areincludedbecauseunit
e_a _ts 8 is alwaysbaseloadedwithno throttle travel.From Figure4 the

I_ fuel consumptionfor each dieselunder baseloadconditionis
known. Thisprovidesa referenceto comparefuel consumption

, w m i i m i under variouslevelsof throttle activity.Fuel consumptionunder
110 IS0 la0 Zra _0 Is0 u0 baseloadconditionswassubtractedfrom themeasuredconsump-

tion at variouslevelsof throttleactivityandexpressedasa percen-
|_ttiulPmr_p_ [tW] rage changein consumption.Throttleactivitywas quantifiedas

averagethrottleangularspeed.
Fg,ure4 - DieselInput/OutputCharacteristic

L_ 6 ! ! | e e ! e ! i j i

u_

_ra H
I_ml 125 " hml

-lI

-n

-N

i_ I I f I I IIO I i a 3 4

l_s,II_ Is.t_] lk,tti,l,en¢hi,I,,k-.I[_ /_,€]

Fig_ure5 - DieselF.ffwie.cyCurocs F_re 6 - throttleMotio. vs.ExtraFuel

RESULTS
Table5

Die_elUnitIncrementalRates The resultsof the fuelconsumptionanalysisaresummarized
in Figure7. Twoexamplesare illustratedin Figure7 correspond-

Unit# IncrementalRate ing to the unit loadsfor "lowwind" and "highwind"ofTable2.
Unit#8 is loadedto a constant100 kWandunit #9 providesthe

8 0.43lbfuel/kWhr balance.Fuel consumptionreductionis shownfor 25 kilowatts
9 0.491bfuel/kWhr and for 150 kilowattsof net wind turbineoutput. Note that

10 0.57 lbfuel/kWhr throttleactivityhas beenneglectedbecauseit was foundto have
nosignificantinfluenceonthis result.

This incrementalfuelconsumptionanalysiscan berelated Whenunit #9 is under load frequencycontrol,eachkilo-
to the overallanalysisobjectivebecausenet windturbineoutput watt-hourof net windgenerationdisplaces0.49 lbs.(0.067gal)of
(grosslets auxiliaries)and the influenceof changingdieseleffi- fuel. This is equal to the incrementalfuel consumptionratefor
c:encyare taken into account.The incrementalrateanalysisand unit #9. Whenunit#9 isreplacedbyunit #10, eachkilowatt-hour
throttleactivityanalysisresultscompletethe overallstudyofwind of net wind generationdisplaces0.57 lbs. (0.078 gal) of fuel.
turbineinfluenceincludingall four(4) factors.

A summaryof fuelusageanddisplacementis giveninTable
DieselThrottleMotion 6. Duringthe test period,unit#9was usedfor load frequency

control. Therefore,each kilowatt-hourgeneratedby the wind
The dieselunit responsiblefor loadfrequencycontrolmust turbine displaced0.49 ibs. (0.067gal.) of fuel. Sincethe wind

continuouslyadjustpoweroutputto maintainelectricalfrequency, turbineauxiliariesconsumeelectricalenergy,the wind turbine
This is necessarybecauseelectricalloadandwindturbinepower auxiliaryenergymeter readingis subtracted fromgrosswind
output change continuously.The diesel speedgovernormoves turbineoutput beforetotaldisplacedfuelis calculated.Duringthe
the enginethrottleto maintainfrequency,inorderto examinethe test period, the MOD-OAwind turbinegenerated11%of the
effectof throttle motionon engineefficiency,"throttleactivity" systemgrosselectricalenergyrequirement,basedon calculations,
mustbequantified, andreducedfuelusageby 6.7%.
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3) MOD-OAwind turbine
auxiliary energy 4,470 kWh Mr. Stiller is an assistant instructor for the Westinghouse

4) displaced fuel 25,700 lbs. (3,560 gal) Advanced School in Power Systems, a member of Tau Beta Pi,
(line 2 - line 3) x line 1 and a registered Professional Engineer in the Commonwe_th of

5) grossenergy Pennsylvania.
generated 496,000kWH
(diesel and wind turbine) Gary W. Scott (Member) graduated from Iowa State Universit3'

6) total fuel burned 358,000 lbs. (49,800 gal) with a BSEEand a BS in Physics in 1980.

"Table 6 is based on unit #9 incremental fuel consumption be- Mr. Scott joined WestinghouseElectric Corporation in 1981
cause this unit was used for load frequency control during the test as a Research and Development Engineer of Advanced Systems
period. Technology division. His various projects have included design

comparisons of three proposed offshore wind energy conversion
CONCLUSIONS _ystems and a dynamics analysis of capacitor assisted motor-

generator sets for feeding large reactive loads.
1. The rate of fuel displacement by the experimentalMOD-OA

on Block Island is equal to the ineremenratlfuel consump- Mr. Scott is an assistant instructor for the Westinghouse
tion rate of the diesel unit on load frequency control. AdvancedSchool in Power Systems.

2. Diesel engine throttle Lc'tivity resulting from wind gusts Richard K Shaltens graduated from CuyahogaCommunity Col-
which change the wind turbine output doesnot significantly lege with an A.A. (Science) in 1973 and ClevelandState University
influence fuel consumption, with a B.S.E. (Mechanical)in 1977.

3. The MOD-OAwind turbine on Block Island, Rhode Island Mr. Shaltens joined NASALewisResearchCenter, Cleveland.
displaced 25,700 ibs. of the diesel fuel during the test Ohio in 1963. He wasassignedto the WindEner_"ProjectOffice
period, representing a calculated reduction in fuel €onsump- in July 1977. His major responsibilities have included: Project
r/on of 6.7% while generating 11%of the total electrical Engineer for the experimental MOD-OA20OOkWwind turbine at
energy. Clayton, New Mexico, and Deputy Project Manager for the experi-

mental MOD-12000 kW wind turbine at Boone, North Carolina.
ACKNOWLEDGEMENT

Mr. Shaltens is currently Project Manager for the four
The luthors wish to express Ippreciation to the Block experimental NASA/DOE MOD-OA 200 kW wind turbines. The

IslandPower Company and in particularto Mr. FranklinW.Rent operational phase of the NASA/DOE MOD-OAproject was suc-
and Mr. MerrillE. Slate, of BIPCO, for their cooperationwhich cessfully completed in June 1982 after being synchronizedto the
made this engineeringstudy possible.This study wls sponsoredby grids for 38000 hours and generated in excess of 3600 MWhof
the NASA Lewis Research Center and funded by the United electricity.
States Dep_rtment of Energyunder Contract DEN3-275.

25



Wind Turbine Generator InteractionWith Diesel

Generatorson an Isolated Power System

G. W. Scott V.F. Wllreker
R. K. Shaltens

Member IEEE Sr. Member IEEE

Advanced Systems Technology NASA Lewis Research Center

Westinghouse Electric Corporation Cleveland, OH
PittSburgh, PA

Abstract - The Block Island Power C(w_pany(BIPC0), on Block Island, mental wind turbine was operated until June, 1982, in parallel with

Rhode Island, operates an isolated electric power system consisting of existing diesel generation owned by (BIPC0), During this t_ree-year

diesel generation and an experimental wind turbine. The lS0-kW wind period some 588,000 kwh of wind generated power was produced, and there

turbine, designated MOO-On by the U.S. Department of Energy is typically were over 8,500 hours of successful synchronous operation and aOproxl-

operated in parallel with two diesel generators to serve an average mately 4.300 start-stop cycles. During this period voltage fluctuations

winter load of 350 kW. As part of an experimental program to evaluate were not noticeable to Customers.

wind turbine generator performance on the isolated diesel power system,

the recordings from an extensive data measurement effort *,erereviewed The purpose of the MOD-0A experimental installation was to obte;n

and analyzed to define the nature of the dynamic interaction effects, early operation and performance data while gaining experience in the

The data were collected over a three-month period on the system to which Operation of a large wind turbine in various utility environments. The

the OOE/NASA experimental wind turbine was connected. During this time, BIPCD installation represents the highest wind penetration of all MO2-DA

the diesel units were lightly loaded resulting In up to G0% of the total sites with wind generation serving up to 60£ of the total syster demand.

load demand being supplied by the MOO-On in periods of severely gusting

winds. In three of the n_odesof normal MOo-on operation -- startup - In a previous paper3, the results of a fuel consumption study were

synchronization, shutdown/cutout, and continuous fixed pitch running -- presented for the BIPC0 installation with the MOD-OA wind turbine

power, frequency an0 voltage transients were comparable with those connected in its IS0 kW configuration. The present stud_ focuses uPOn

produced by typical load changeson the diesel system alone. In the the dynamic interaction investigation for the purpose of quantifying any

fourth mode, variable pitch (constant power} control, a significant increased disturbances to BIPC0 resulting from connection of the MOD-0A
reduction in syste_ damping sometimes OCcurred which gave rise to wind turbine generator.

increased frequency and voltage perturbations under gusty wind

conditions. Based on a linear model of the system it is shown that The BIPC0 system is detailed in Figure I and shows the w_nd turbine

changes in control system settings could be made to improve damping, interconnection. Because the tests were conducted during the low POwer

The main Study conclusion is that wind turbine generation, even when use season (winter),few of the diesel units were connected -- typically

providing a large portion of the power required by an isolated utility, only the #B and pg units were on line. Such operation represented the

can be a practical option resulting In System disturbances no greater conditionswhere severe transient disturbances and dynamic interactions
than those found in conventionaldiesel systems, could be expected.

INTRODUCTION

The _rederalWind Energy Program was established t° enable research I _-{_ __

and development on various applications of wind energy systems. The

program was originally aOministered by the National Science Foundation,

and is currently directed and funded by the U. S. Department of Energy. m.,*,_...J.vA _._.L..jA o ,-_L-- ,a

One phase of the prograrninvolves the design, fabrication, and experl- .lm_ e-_ _'_A _'_A _Tv _'_

mental operation of large tw)rizontalaxis wind turbines. Thls part of ,_,w ,_m I _ _1 *'_'

the program Is managed by the Lewis Research Center of the National __'T T-T T T " TT

Aeronautics and Space A@nini%tratlon. ,he flr$t wlnd turbine generators --"_' I" IIIII I_

(VTG) to be placed into utility operltlon under thls program ] were four

200-kW horizontal axis machines designated MOD-OA. The third MOD-OA " N #il _ N Ill #l)

machine waS installed on Block Island, Rhode Island2'S In eld-lg7g, and .-i,

""* '........ _-o
L-wl_

ms modified for ISO-kW ewmxt_m output in October. 1980. The expert- _ .,e 1,, _.,_ ,.,w *.;w L,w 0met_ma

_mvA _"

83 SH 329-0 A paper recommended and approved

by the IEEE Power Generation Cor_nltteeof the IEEE
Pover Engineering Society for presentation at the

IEEE/PES 1983 Su_ner Heetlng, Los Angeles, Figure I - BIPC0 Generation System and DOE/NASA .

California, July 17-22, 1983. Hanuscrlpt submitted NOD-0A Wind Turbine Generators (k/TG)

Harch 21, 1983; made available for printing Jtme 21,1983.

© 1983IEEE
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The instrumentationpackage used to record sOe_ 40 variables versus To serve as a basis for con_oarison,the Block Island syste_ oPerat-

time and store the results on magnetic tape and strip chart recordings ing with diesel generation alone is first examined.

has been described in previous repOrtS3'4. For the purposes of Studying

dynamic interactions, relatively few of the recorded variables ire CharacteristicBIPC0 Diesel Dynamics (Without HOD-OA I_TG)

necessary. The significant response characteristic will be revealed in

either the power, frequency or voltage time profiles. Additional Figure 2 shows the power output from t_ diesel units (.8 and "9)

variables such as diesel generator throttle position, wlnd turbine blade and the system frequency. Unit IS was set at fixed throttle while

pitch angle and nacelle wind speed _re also utilized in developing the the governor of Unit (g was operational. At a time of approximately 315

linear dynamic model used in evaluating system performance, seconds, a load increase Occurred causing the speed of both diesels--and

hence syste_ frequency -- to decrease. Then the governor on Unit .g

responded to maintain system frequency constant by increasing the power.

ANALYSIS This resulted in a IS kW power and O.a Hz frequency peak-to-Peak ahan)e.

An apparent overshoot of soe_e201 could be interpreteO to be the syste_

Monitoring the Slock Island F_OD-OA installation for dynamic characteristic damping; however, rando_ load fluctuations made it

interactions took place during the period from February through April, difficult to accurately measure the actual value. This is more easily

1982. During this time, a large volume of data were recorded. This seen in Figure 3 where the Ioad activity makes the System frequency

analysis consists of reviewing the data to define the nature of (and thus governor control loop) appear to be in a cond;tion O(

interactive behavior and tO evaluate the most severe transient sustained oscillation. This does not imply a condition of _narginsl

disturbances. System instability; rather,the frequency of about I rad/s that _o_nates

in Figure 3 is a characteristic of the BIPCO ¢iesel system.
There are principally four modes of operation for which it is

desired to examine dynamic interaction:

I. Startup and synchronizationof the wind turbine generator _*o _

2, Normal shutdown and cutout of the wind turbine generator ._an __
3. Fixed pitch generation mode

4. Variable pitch (constant power) generation mode i

All of these modes of operation are automatically controlled, az _.__.. I, .... " .......... " ......... -

Startup and synchronization requlre$ the wind speed to be within an zoo |I _m_',"- _'_

acceptable range for a minimum time duration, followed by maintenance of

a phase match between the MOD-OA generator vol_ge end system voltage ,re L.O,)_D

for a certain minimum time duration after which the breakers are closed, i's° i I INCREASE
The blade pitch control then ramps the power it a fixed rate until fixed et" i m
pitch conditions occur or until the desired power setpolnt is reacheds • ,oot£--""'--'-"'_"_

Voltage and power transients can be quite significant if Out-of-phase w rs_ m_*

synchronizationw_-e to occur, soI
For the second operational mode, a normal shutdown is initiated o[

when the wind Speed Is either too low or too high. The blade pitch son ]*o szo 3)o ),o )so )so
tiN[ (S(CS!

angle is decreased until the wind power output is close to zero at which

time the breaker opens. If the current flowing at this tlme i$ sizable,
Figure 2 - Response to a Single Load Application on

the voltage transients can be significant. BIPC0 Diesel System {without MOD-0A _G)

In the third _de of operation, the blades are fixed at zero •

degrees, w!_Ich optimizes wind Power transfer but results in the power (*o.i

output varying with the wind Speed squared. The power $etpolnt on the

Block Island MOD-OA is manually adjustable from zero to lad kW. The _ SOl

purpose of the adjustable setpolnt was to allow BIPCO utility personnel Ill

to lo_r than maxin_umSettings of the MOD-OA to prevent the controlling (

diesel from dropping to less than 503 rated. Operation of the diesels z_o

for extended periods it low power levels could result in possible

engine ¢hmn_gl_and/or excess oil aCCumulation in the exhaust stack.
aoo _ •Fixed pitch operation occurs when the wind Supplies less po_er than

de_nded by the p_r setpolnt. The ncture of the dynamic behavior in l)s

this _de is dominated by the diesel speed governor controller, o's°

[ 12S
I

The fourth _de, variable pitch (contact power) operation, has the ,_oo

potential for producing the highest levels of interaction because of the w rs
m_l

presence of bcth diesel and wlnd turbine control loops. When wind pcMwer so

rlses above the power (usually 150 kW) setpoint, the pitch control

system beglns operation to maintain an average po_r equal to the o
setPolnt. The pitch control SyStem consists of a power measurement so an re an to lad _o

transducer, a manual power setpolnt control, a proportional-plus- tl_ ,tics*

integral feedback function, and a hydraulic actuator which varies the Figure 3 - Normal Load Fluctuation on BIPC0 Diesel

PitCh of the blades. System (without MOD-0A WTG)
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Normal Startup and Shutdovm Mode Behavior The typical Shutdown Case is sho_d_in Figure 5. In thls case, the

dlmped power oscillation that occurs is Soe_>,lhatlower In frequency an_

A typical response following MOO-OA wind turbine generator higher in amplitude compared to that produced durin_ Synchronizing _o

synchronization Is sho_n in figure 4. the Unit #10 diesel is under abrupt transient is observed in power or voltage during the generator

governor control, SO that as blade pitch angle i$ ramped up Providing disconnection. The governor controlled (]0 diesel power is observed to

wind power contribution, the governor action results in a near "mirror have successfully responded to the rapidly decreasing (5 to 1[ WW'Sec)
i_ge" power proflle to e_eetthe load d_and. The po_r response shows MOD-OA p_er prior to generator disconnection.

a distinct oscillatory maodeof about 6.6 rmd/s, beginning shortly after

SYnchronizationat about the ]62 second point. Also, after ramping to In both startup and shutdown, the effect of the MOD-OA connect;or.

fixed pitch operation at 175 seconds, a damped oscillation of 0.8 rad/s or disconnection in BIPCO system is of about the sa_ magnltu(e as that
occurs having a peak-to-peak power swing of about ]5 kW. The frequency Produced by normal load fluctuations.

variation is sl:w_e0.6 HZ peak-to-peak, and the average voltage at the i.mS

MOD-OA bus rises to 1.4% The O.B HI frequency I$ largely dependent on

the wind on the blade being blocked by the tower--called the tower (
Shadow effect.5 This effect does not seem to increase the nor_l 11

peak-to-peak voltage, nor is it visible in the syste_ frequency. _ m.1
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_I,

ale,

II Fixed Pitch Ve, .us Variable Pitch (_nstant PO_r) BOhavlor

m*o ,so ,1o ,to ,too Ira _ An example of comparative performance between fixecI,anO variable

IIW[ IIfCSt pitch (constant powor) control aPPears in Figure 6. Betweer 6C and 7C

Seconds the wind speed Is dropping, causing the wind turbine to fall

below the ISO-kW $etpoint. The blade pitch controller in turn changes

the blade pitch angle until it reaches its maximum position. This holds

Figure 4 * Startup and Synchronization of the MOD-OA Wl'n out to the gS-second point at which ti_ the increased wind speed causes

the pOwer output to rise above the )50-kk;setpoint and the blade P_tCh
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angle changes to reduce output power. At about 110 seconds an governOrS and b'l"Gpitch controller/actuator and lumping the inertia of

oscillation of about 0.9 rid/s develops and persists for Several cycles the diesels (#8 and #g) and assuming a stngle total inertia for the

unttl decreased wind speed again results in fixed pitch operation-*at HOD-OA. The conceptual model that results is shown in figure 7.
which point the Oscillation damps out. The O.g rad/s oscillation is

readily apparent in the system frequency, resulting In a peak-to-peak

varlmtlon of about 0.7 Hz. During the fixed pitch intervals, the

peak-to-peak system frequency variations do not exceed o.a Hz. Figure 6 PldlX (AIRIer

also de_nstrates that the bandwidth of the pitch control loop is much _

Io_r than the tower shadow frequency of 6.6 rad/s in that the Pitch

control output has a negligible amplitude at this frequency. _ /am PGE)(

These variations were among the most severe encountered and do not _._" _ _\\\'\\\_ \'\1

characterize all fixed-variable intermittent pitch intervals, since the us2 FLUID Wl DIESELS
COUPLING

hehavior wlll vary considerably with wlnd gusting conditions. However,

even intervals where the osclllitory amPlitudes are lower, they tend to

oscillate at about the same dominant frequency, i.e. around 0.9 rad/s.

This observation SuggeStS that the oscillatory behavior is significantly

related to the pitch control|er dynamics.

figure 7 - Conceptual Model of Diesel and WTG System

_Slr The fluid Coupling shown in Figure 7 transfers speed differencebetween the MOD-0A and the synchronized wlnd turbine alternator intob

,o_ power. The actual function is non-linear (square law), but for the

M model it is llnearized, resulting in a constant for the particular power/

$ setpolnt selected. Figure 8 shows the functlonal block diagram that is
s _ obtained.

;

el"I

Sho_ in Figure 8 are the control transfer functions applicable to

fLo s MOD-OA on Elock Island. Appearing in a block labelled "data fit pitch

a _ response" is a simple lag that was required to match the Phase/gain_oan. characteristic of the model with that measured fro_ the data. It is

) applicable only in the region of 0.9 rad/s.
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Linear Model-Optimlzation I S(s/4o+O_
• * ]nett/i Conlcilntl on 2_O_kVASale

Toward the conclusion of the field measurt_nt program, a linear

model was formulated specifically for the purPose of identifying and

quantifying the o.g rad/s underdamped oscillatlon wlich was primarily Figure B - MOD-OA and BIPC0 Dynamic Model

observed during varlable pitch operation. This objective was met by

retaining the pertinent controller dynamics for both the diesel unlt
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The modelled tlme response of the NOD-OA to a step change of 100 kW power setpoint. However, linear model analysis suggests that b)

of wind power is shown in figure 9. Under fixed pitch control on the adjusting the diesel governor and/or blade pitch controller aOditional

BIPCO system, the power output his a rise time of 2 seconds and 6_ damping can be obtained to produce the same performance given bj fixeC

overshoot. The rise time characteristic is affected mostly by the ratio pitch operation.

of fluid coupling damping to WTG inertia. The higher the ratio, the

faster the response. The overshOOt iS determined by the system Wind turbine generation, even when providing a large Portion o( the

frequency fluctuation resulting from the direct response to the load power required by an isolated utility can be a Practice! O)tlon result-

decrease, ing in system disturbances no greater than those fount in conventi_n_l
diesel systems.

Activation of the pitch control results in an underdan_oedresponse

with in exponential time constant of 10 Seconds (gS_ Settling time of 30

see.). Although this is a stable response, the )ow damping allows the

oscillation to continue for several cycles before damping out. ACKNOWLEDGMENT
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Because the optimized proportional-integral gains obtained for the July 28-30, 1981.

model were not tested on the actual system, the improvement Predicted

cannot be guaranteed. However, even a partial increase in the damping

would pro_bly reduce the System frequency deviations to within the

range obtained with diesel Operation alone.

CONCLUSIONS

Power and voltage transientdue to MOO-OA normal startupand

shut@,rn_re of insignificantmagnitudeas were the cyclicpower
yarlltionsdue to the tower-shadoweffect,

Power fluctuationsdue to MOD-OA operationunder flxed-pltch

OOeratlonwre successfullycom_oensatedfor by the actionof the diesel

9overnorcontrol. As a result,the frequencyvariationswereapprox-

Imatelythe $1memagnitudeas thosecausedby the major load demand

fluctumtionsduringdieseloperationclone.

HOD-OA operationunder variable(constant-power)pitch control

resultedin an increasein the amplitudeof the underdampedsystem

naturalfrequency(O.gred/s). The accompanyingfrequencyvariation

reached 11 under the most severe conditions for a ]SO-kW MOD-OA
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Abstract An intensivedata gatheringeffortwas conductedin IgB2 frbm

FebruarythroughAprilon the BIPCOsystem. Duringthisperiod,system

One phase of an overall effort in evaluatingperformanceof a loadingwas low,so thatthe 150 kW levelof the MOD-OAWIG represented

150 kW MOD-OAwind turbineconnectedto the Block IslandPowerCo.any a windturbinepowerpenetrationof up to 60% of the totalloaddemand.

(BIPCO) system consistedin analyzingthree methods of excitation The some 40 variablescontinuouslyrecordedversustimeenabledthree

(reactivepower)control. These are identifiedas: 1) constantvar distinctanalysiseffortsto be conducted.The firstof thesefocused

(reactive),2) constant voltage,and 3) constantpower factor (PF) on the fuel displacementaffordedby the WIG operatlon(1) and the

control. The power system environmentin which the wind turbine secondon the interactivedynamicbehaviorbetweenthe dieselsystemand

generator(WIG)existsultimatelydetermineswhichmethodof controlis MOD-OA WIG(2). This report addressesthe effect on performanceof

the most suitable. In the case of the BIPCO installation,the major threetypesof WIG fieldexcitationcontrol.Theseare identifiedas:
emphasiswas to insuresufficientWTG electricaltorqueduringwind

guStS in low power output periods. Subsequentuse of constant PF (I) Constantvar (reactivepower)control

controldemonstratedan adequacyof performanceequivalentto thatof {2) Constantpowerfactorcontrol

constant var control while constant voltage control indicateda {3) Constantvoltagecontrol
diminishedcapacity to maintain synchronismwith the utility,when

co_paredto constantvan or PF control. A mathematicalmodel which Eachof thesemodesof reactivepowercontrolwere manuallyselectable

incorporatesthe detailedexcitationsystemtransferfunctionsis used on the BlockIslandMOD-OAWIG. Formost specificWIG sites,it is most

to comparethe resultsindicatedby the measurementsproducedduringa probablethat once a control strategy is chosen, it would not be

three-monthdataacquisitioneffort, changed. However,havinga11 threeavailableprovideda laboratory-like

facilityfor assessingthe advantagesand disadvantagesof each method

INTRODUCTION as it appliedto thisparticularsite.

The Wind Energy Projectis a part of the FederalEnergyProgram ANALYSIS
originallyadministeredby the National Science Foundationand is

currentlydirectedand fundedby the U.S. Departmentof Energy. One For the BIPCO system operatingwith diesel generationalone,

phaseof the programinvolvesthe design,fabrication,end experimental normallyonlyone dieselgeneratorunit is operatingin the controlled

operationof large horizontalaxis wind turbines. Thls part of the constantvoltagemode-- the othersare switchedto manual(unregulated)

program is managed by the Lewis Research Center of the National resultingin a constantvoltageto be appliedto the generatorfield.

Aeronauticsand SpaceAdministration.The firstwind turbinegenerators In thismanualmode,systemreactiveload requirementscan be flexibly

(WIG)to be placedintoutilityoperationwere four 200-kWhorizontal met at the optionof the Systemoperator. No changesin this basic

axismachinesdesignatedMOD-OA. The thirdMOO-OAmachinewas installed operatingprocedurewere made by the utilitywhen the MOD-OA wind

on BlockIsland,RhodeIsland,in mid-lg79,and was modifiedfor ISO-kW turbine generatorwas connected into the grid. In provide some

maximum output in October,1980. The experimentalwind turbinewas perspectivein the usage among the three methodsof reactivepower

operateduntilJune, 1982,in parallelwithexistingdiesel generation control,thefollowingis a discussionof the applicationto the MOD-OA

ownedby BIPCO. Duringthisthree-yearperiodsome588,000kwh of wind WIG installedon the BIPCO system and also to utility systemsin

generatedpower was produced,and there were over 8,500 hours of general.
successfulsynchronousoperation.

ConstantVAR Control

Priorto, end duringthe firstmonth (February,1982)of the data

acquisitionperiod,the excitationcontrolon the WIG wasmaintainedin

84 W)4 056-8 A paper recon_nended and approved the constantvar mode. This choicewas basedmainlyon the fact that
by the IEEE Power Generation Con_nlttee of the IEEE WIG synchronizationis best maintainedby having as high a field

Power Engineering Society for presentation at the excitationas possible.Also,the fact that the impedancpbetweenthe

IEEE/PES 1984 Winter Heeting, Dallas, Texas, WIG and the diesel generation buses was small avoided the concern of
January 29 - February 3, 1984. Ranuscrlpt submit-

overor undervoltagebeinga problemat the WIG terminals.
ted June I_ 1983; made available (or prlnting
January 6, 1984,
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This control method can assume one of several schemes in found in general that, relative to fixed excitation (no voltage

aCCOmplishing ItS stated objective. For example, by removing the control), the faster the voltage regulator responds, the lower wi11 be

terminal voltage feedback signal to the regulator and replacing it with the damping of the system natural frequency. It is also possible tu

a signal proportional tO the reactive power, the latter may be produce negative damping fro{n some regulator/exciter designs that

controlled statically or dynamically. Another technique -- the one interact with the system's natural frequency.

actually used -- consists of inserting a voltage in series with the

voltage reference. Mere, the terminal voltage feedback signal is Data Measurement Results

unaltered and an integral reset control changes the reference until the

actual reactive power exactly matches the desired setting in Figure I is a block/single line diagram that functionally describes

steady-state, the typical BIPCO system configuration during the three-month data

The second technique has the advantage of tending to preserve the instrumentation and collection period with emphasis on the WIG

same transient response aS provided by the constant voltage control excitation components. The MOD-OA wind turbine generator is a salient

option. A posslble disadvantage is that the capability of achieving pole type whose field is driven by a brushless rotating exciter; thr

supplemental damping of the system natural electrical frequency may be stationary field winding of the latter is in turn powered by a

limited by the deminance of the voltage feedback loop. In the case of solid-state regulator which includes an adjustable damping feedback

the generator used, the dampin_ provided is relatively large, so that circuit. An additional module incorporates the selectable vat or PF

additional damping from the exciter is not a necessity, control action.

Constant Power Factor Control v_ _nNOI_BNE UNIt _(SIL

The constant PF control scheme for excitation control was __i_i -_r___;

switched in for evaluatlon in March of 1982. FOr a nominal system with

non-excessive var requirement (i.e., the lagging power factor load is

relatively low), maintaining constant power factor WTG operation would

be the most desirable method of excitation control from the standpoint

of the effect the WTG generation has on the diesel system. That is,

under constant power factor, the WTG appears to the diesel generator as Figure I - Basic Configuration for Study of Excitation Control
on MOD-oa WTG ,

a (negative) fixed impedance load -- as such, this probably imposes the

least severe loading constraints since ideally all generating units

would be operating at their design power factors. The diesel generator complainant shown was tyoically comprised of

The method of control of power factor'utilizes the same reset only two units: one running under both voltage regulation and governor

function used for var control. The difference Is that rather than control and the other under fixed excitation and fixed throttle. The

comparing with a constant reference, the reference is now proportional excitation units on the diesels are characterized by terminal voltagr

to the real power. Thus, the ratio of vars to power and hence power recovery times in the ! to Z second range and for the governor contro]

factor is maintained constant, between 3 and S seconds.

As previously reported(2), the BIPCO syste_ exhibits damped

Constant Voltage Control oscillations in the .8 to I radls range with or without the MOD-OA W_G.

When the MOD-OA is connected and in the variable blade pltch (constant

The method of constant voltage control was found to be the least power) mode, the raagnitudeof the system frequency fluctuations can rise

desirable of the three n_ethods for the BIPCO WTG and was evaluated only above those encountered with diesel operation alone. These oscillations

over a six-hour period In May, 1982. Those systems where constant are not confined to the real power con_)onentalone -- they also appear

voltage control does find application occurs when the generating units on the reactive power related variables. Figure 2 Is typical of the

(wind, diesel, or other) are Separated from one another by relatively perfor_ance in the variable pitch/constant power and constant var

long transmission 11nes, resulting in terminal voltages which are nearly control modes. All of the variables have been filtered over a i second

directly proportional to the level of field excitation. Consequently, interval to more easily interrelate them.

to avoid voltage excursions that could be damaging, the field excitation Figure 2 reveals how well the WTG MOO-OA reactive power is

Inust be controlled by voltage, or at least by having terminal voltage controlled to the 50 kvar setpoint. Also, It is apparent that the

determine the limits of excitation, controlled diesel (Unit #9) supplies the var fluctuations resulting from

A problem with constant voltage control on any type of termlnal voltage variations. Another asPect of reactive power behavior

interconnected synchronous generators (WTG Or diesel) is the relative is that the fixed excitation diesel generator (Unit #8) exhibits vat

inablllty to share proportionately the reactive power load. The. fluctuations 1800 out of phase with those of Unit #9; so that although

situatloe Is analogous to real power sharing unbalances that can occur Unit #B is supply!ng a fixed level of vars to the system, it is

when the Speed governors on generators are at a Io* droop setting -- absorbing a portion of the variational contribution from Unit #9. In

l.e. a low ratio of Speed change to load change. By increasing the effect then, the larger the nu_i)erof generators with fixed excitation,

speed droop, real power load sharing can be i_roved. So it Is with the greater the burden on the controlled unit from a transient or

reactive load. Thls Is achieved by introducing an additional feedback variational standpoint. As shown in Figure 2, generators under constant

slgneI tO the voltage megulator which is proportional to termlnal vat control have the advantage of not affecting this fluctuating var

current and legging terminal voltage by 90 °. In effect, this acts as component.

an inductive reactance placed in series wlth the generator, but lylng Figure 3 is typical of the behavior when the WTG excitation control

outside the voltage regulator loop, so that reactlve current Is limited, is in the constant power factor mode. For this particular case, the

This so-called reactlve droop c(wapensatlonhas increasing importance as MOD-OA Is operating below the nomlnal ]SO kW setpoint so the blade pitch

the lw_)edanceof the tie among generators decreases, is fixed. The wind profile during the 60 second segment produces WIG

The dynamics of the voltage Control loop -- formed by power fluctuations of the same magnitude (i.e., 30-40 WW) as In

regulator/exclter and generator can also affect the system stability In Figure 2. However, the reactive power variations are noticeably higher

terms of changing the damping of the system natural frequencies. It is than in that case. AIso, because Unit #10 is the only diesel generator
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connected, the variational var con_ponent due to a fixed excited

generator is missing, and there ts a Corresponding reduction in the

peak-to-peak var amplitude of Unit a]O. If the ratio oF i_T_ power to
F

vats is calculated, it is found to have the same relative constancy as R
E60.S

vats did in Figure 2, denoting good control oF power Factor. Similar to 0

Figure 2, the power and var fluctuatlons ire In-phase and the u
E 60.

peak-to-peak frequency variations are nearly the same. NC
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Figure 3 - _asured PerForxnance with MOD-OAWTGunder Constanto

iO 20 30 ao So Power Factor (PF) Control

TIME SEeS

Figure 4 shows behavior under constant voltage control with 5_

reactive current droop compensation. Here, the wlnd activity has

Figure2 - MeasuredPerformancewithHOD-OAWTGunderConstant minimalgusting actlvlty:wlth the result that the dominant .g rad/s

Reactive(vat)Control oscillationis low. As a result, the var gctivlty of the diesel

generatorIs relativelylow. Contrastedwiththe othertwo schemes,the
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V/TGtar fluctuationsare seenin Figure4 to be higherthanthoseof the oppositionbetweenpowerand tars(at 0.7 red/s)becomesevident. This

diesel generator.AIso, the low frequencytar and poweroscillations is justthe oppositedesiredconditionfromthe standpointof preventing

are oppositein phase-- the majorresultof which1s thatthe transient loss of synchronism.Althoughthe fluid coupling used in the _G

excitationrequirementsof the dieselunitare minimized, minimizesthis problem,Figure5 showsthe potentialfor underexcited

operationas the pOwer swingsbeco_nelarge. Therefore,uncompensated

constantvoltagecontrolshouldprobablybe avoided.

Figure5 alsoshowsa shutdownoperation-- increasingbladepitch

61. graduallyto bring the WTG powerto zero. Now,becauseof the constant

voltagecontrol,the WTG excitationand tarsare increasing,so thatat

the tlme when the line breakeropens, the WTG is deliveringaround

150 kvars. Droppingthisgenerationappearsto the dieselsystemto be

60.5 equivalentto applyinga 150 kvarinductivereactiveloadas evidenced

by the dropin terminalvoltageseen in Figure5. The recoveryof the

r voltage also illustrates the response of the diesel generator
{ regulator/excitercontrolsystem.0
u 60. The tracescomprisingFigure5 are unfilteredand showthe presenceE
N of the approximate6 rad/swind shadow(2) frequencyin the WTG power.

Tc The WTG tars traceevidencesthe 6 rad/sfrequency,but at an amplitude
lessthan30% of thatvisibleon the powertrace.
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AIO0 In examining the foregoing field measurement results, It isq
S T5 difficult to compare and quantify the effect on system voltage and

SO _ frequency as a function of the type of excitationsystemalone. A

25 transient(timedomain) model of the system block diagram given in

0 Figure I was therefore formulatedand digitally programmedusing

sTo sso sgo coo 61o 62o constants develo_d by the equipment manufacturersand given in

tIME (SFCSm operationalform on Figure6. The electrlcaldynamicswere represented

in detall uslng the we11-knotmPark transformationequations. The

Figure 4 - MeasuredPerformance wtth MOO-OnWTGunder Constant diesel generators were lumped together and represented by a fixed
VoltageControl- 5g DroopCompensation voltage in series wlth their equivalenttransientreactance. This

simplifiedmodel for the dieselgeneratorswas justifiedprimarilyona
the basis that no evidenceof interactiondue to the dieselgenerator

Figure5 servesto demonstratehow the characteristicsof constant excitationsystemwas observedin the data.

voltagecontrolcan ultimatelyleadto a deteriorationIn perfonMnce. For the _chanlcal portionof the simulationmodel, it was found

Herethedroopco_M_ensatlonhis been set to zeroand as the wind speed convenient to use the model developed In l previous paper.(2)

risesproducingWTG power above the 150 kW setpoint,the bladepitch Figure7 shows how that model has been modified: Here, torque

controlbeginsto r_ducethepower. As the c_Ination of WTG dynamics quantitiesrather than power quantitiesare used and, rather thanand wind profileinteractto produce a growing
osclllation,the phase issumlngpowerand/ortorqueon the outputsideof the fluidcouplingto
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be identicalto WTG electricalpowerand/ortorque,the latteris now a Figure 8 shows the responseof the electricalangle for four

function of the electricaldynamicsof the WIG. Also, the previous excitationconfigurations.The peaksystemangleexcursiondue to the

,x)dellumpedthe momentsof Inertiasof theblades,hub,gears,pulleys, .5 p.u.wind torquestep variesbetween0.6 rid for constantPF control

and input side of the fluidcouplinginto e singlevalue. Detailed to 0.78rid for constantvoltagecontrolat zerodroop. By the above

mechanicalmodal analysis(3) gives a low, purely mochanical,modal criterionthen, the PF control is the most effectivein minimizing

frequencyof approximately20 rad/sfor MOD-0Asystems. Becausethe WIG frequencydeviationwhilevoltagecontrolwithno droopcompensationis

ratioand outputfluidcouplinginertiasare small,the modalfrequency the leasteffective.Conversely,as alsoshownin FigureB, the voltage

formedby theseand the equivalentair gap torque springconstantis regulationis the poorestunderPF controland the best under voltage

also In the 20 rad/sregion. It, therefore,was deemed advisableto (0% droop)control, llowever,voltageregulationat the effectiveSyStem

Includethe mechanicalmode tO determineIf any interactionmightoccur bus willbe determinedby the voltageregulatoron the dieselunit,so
betweenthesetwo learlyequal modal frequencies. Two approximately from the standpointof steady-statevoltageregulation(i.e.,2 or more

equal inertiaconstants(Ha, Hb) end a singlespringshaft constant secondsfollowingthe wind torquetransient)at the syste_ bus, k_G

K formthlssimplifiedblade/hubdynamicsportion, voltageregulationis of lesserimportance.A characteristicof the var

v_-r and PFcontrolis thattheyprovidea betterdampedresponseby setting

{log the regulatordampinggaln(GD)to a lowersetting. The degreeof this

e . [X LtNF.JU_tZ[D -- ImprovemontiS compared in Figureg. In purelyvoltagecontrol there is(W[NI_AT_

o,o-lXlS a_N littledifferencebetweena dampingsettingof i. or .4 so that one

OO4S_+GO [TWel setting'isfeasiblefor all threecontrolmodes.
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Figure6 - SimulationModelfor ExcitationSystemsEvaluation
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Figure 7 - Hechanical Portion of Model S
t

[
Not appearing in the model of Figure 7 ts the blade pitch control M

and wtndt_ dynamics representation. As pointed out in the previous :.S
paper,'2' this semi-emplrlcalmodel was designedto representonly the €

frequency region around .g red/s, and might not be Ipproprlate for L[

behavior over • broQder frequency band. R 'e

With the model now formulated, the two most significant variables

for evaluating system performance ire the responses of system voltage .3
end frequencyto a step torqueequivalentto a rapid increase of wind

speed at the turbine blades. Variationsof the system frequency

(nominal60 Hz) reflectthe dynimlccharacteristicsof bothWIG and the .2 , , . , , . , ,
diesel generators, and, therefore, it Is difficultto assess the i 2 3 4 s a r I

relatively minor effect of the krrGexcitation system by viewing only the titlE-Sic.
variationsIn system freq-ency. A more sensltlv_measurementIs

providedby comparingthe electrioilinglebetweenWIG rotorand diesel figure8 - IMbdelResponsesto WindTorqueStep
(ntervalvoltage. The sNller the excursionof thisangle,the ""ller

will be the frequency fluctuations, In general. (Duping gain,GO - 0.4)
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Conclusions

Based on the analysisof the data recordingsmade on the BIPCO

system,comparisonanlongthree methodsof MOD*OAWTG fieldexcitation

(reactivepower) controlrevealedno readilyapparentdifferencesin

ter_nsof systemvoltageand frequency(60Hz) behavior.However,It can

be demonstratedby a simulationmodelthatconstantpowerfactorcontrol

producesa higher transientstability(abilityof the WTG to maintain

synchronismwith the diesel utility) than does either the constant

voltageor constantvar _thod.

The low frequencyfluctuatingreactivepower coe_onentcausedby

the combinationof MOO-OAIll'G,systemloadand winddynamicsis provided

by thosegeneratorsWhOse fieldexcitationis under constantvoltage

control. All generatorsunderfixedexcitationor constantpowerfactor

controlappearto this fluctuatingComponentas an inductive,reactive

load, thereby increasing the demand on the voltage controlled
generators.

Constant var control has the advantage of providing a

non-fluctuatlngsourceof reactivepower -- a desirablefeaturewhen

systemload is at a low power factor,as was the case duringthe data

collectionperiodon the BIPCOsystem. At the same time, var control

transientstability,While not quite as high as producedby constant

power factorcontrol,is higherthan that yieldedby constantvoltage

controland Is, therefore,a reasonablecoe_)romlse.
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