2,186 research outputs found
Heat flow in southernmost California and the origin of the Salton Trough
Heat flow in the Imperial Valley and adjacent crystalline rocks is very high (∼140 mW m−2). Gravity and seismic studies suggest the crust is about 23.5 km thick with the lower half composed of gabbro and the upper fourth composed of low-density sediments. Conduction through such a crust resting directly on asthenosphere would give the observed heat flow if there were no extension or sedimentation. However, both processes must have been active, as the Imperial Valley is part of the Salton Trough, a pull-apart sedimentary basin that evolved over the past 4 or 5 m.y. To investigate the interrelations of these factors, we consider a one-dimensional model of basin formation in which the lower crustal gabbro and upper crustal sediments accumulated simultaneously as the crust extended and sedimentation kept pace with isostatic subsidence. For parameters appropriate for the Salton Trough, increasing the extension rate has little effect on surface heat flow because it increases effects of heating by intrusion and cooling by sedimentation in a compensating manner; it does, however, result in progressively increasing lower crustal temperatures. Analytical results suggest that the average extensional strain rate during formation of the trough was ∼20–50%/m.y. (∼1014 s−1); slower rates are inadequate to account for the present composition of the crust, and faster rates would probably cause massive crustal melting. To achieve the differential velocities of the Pacific plate at one end of the trough and North American plate at the other with this strain rate, extension must have, on the average, been distributed (or shifted about) over a spreading region ∼150 km wide. This is about 10 times wider than the present zone of active seismicity, suggesting that the seismic pattern is ephemeral on the time scale for the trough's formation. Narrow spreading zones are typical where sustained spreading is compensated by basaltic intrusion to form the thin oceanic crust, but where such spreading occurs in thicker continental crust, broader zones of distributed extension (with smaller strain rates) may be required for heat balance. The Salton Trough model suggests that distributed extension can be associated with substantial magmatic additions to the crust; their effect on crustal buoyancy has important implications for the relation between crustal extension and subsidence
Recommended from our members
Preliminary interpretation of thermal data from the Nevada Test Site
Analysis of data from 60 wells in and around the Nevada Test Site, including 16 in the Yucca Mountain area, indicates a thermal regime characterized by large vertical and lateral gradients in heat flow. Estimates of heat flow indicate considerable variation on both regional and local scales. The variations are attributable primarily to hydrologic processes involving interbasin flow with a vertical component of (seepage) velocity (volume flux) of a few mm/yr. Apart from indicating a general downward movement of water at a few mm/yr, the reults from Yucca Mountain are as yet inconclusive. The purpose of the study was to determine the suitability of the area for proposed repository sites
Enhancement and suppression in a lexical interference fMRI-paradigm
Previous picture-word interference (PWI) fMRI-paradigms revealed ambiguous mechanisms underlying facilitation and inhibition in healthy subjects. Lexical distractors revealed increased (enhancement) or decreased (suppression) activation in language and monitoring/control areas. Performing a secondary examination and data analysis, we aimed to illuminate the relation between behavioral and neural interference effects comparing target-related distractors (REL) with unrelated distractors (UNREL). We hypothesized that interference involves both (A) suppression due to priming and (B) enhancement due to simultaneous distractor and target processing. Comparisons to UNREL should remain distractor unspecific even at a low threshold. (C) Distractor types with common characteristics should reveal overlapping brain areas. In a 3T MRI scanner, participants were asked to name pictures while auditory words were presented (stimulus onset asynchrony [SOA] = –200 msec). Associatively and phonologically related distractors speeded responses (facilitation), while categorically related distractors slowed them down (inhibition) compared to UNREL. As a result, (A) reduced brain activations indeed resembled previously reported patterns of neural priming. Each target-related distractor yielded suppressions at least in areas associated with vision and conflict/competition monitoring (anterior cingulate cortex [ACC]), revealing least priming for inhibitors. (B) Enhancements concerned language-related but distractor-unspecific regions. (C) Some wider brain regions were commonly suppressed for combinations of distractor types. Overlapping areas associated with conceptual priming were found for facilitatory distractors (inferior frontal gyri), and areas related to phonetic/articulatory processing (precentral gyri and left parietal operculum/insula) for distractors sharing feature overlap. Each distractor with semantic relatedness revealed nonoverlapping suppressions in lexical-phonological areas (superior temporal regions). To conclude, interference combines suppression of areas well known from neural priming and enhancement of language-related areas caused by dual activation from target and distractor. Differences between interference and priming need to be taken into account. The present interference paradigm has the potential to reveal the functioning of word-processing stages, cognitive control, and responsiveness to priming at the same time
Quantification of Ophthalmic Changes After Long-Duration Spaceflight, and Subsequent Recovery
A subset of crewmembers are subjected to ophthalmic structure changes due to long-duration spaceflight (>6 months). Crewmembers who experience these changes are described as having Spaceflight Associated Neuro-Ocular Syndrome (SANS). Characteristics of SANS include optic disk edema, cotton wool spots, choroidal folds, refractive error, and posterior globe flattening. SANS remains a major obstacle to deep-space and planetary missions, requiring a better understanding of its etiology. Quantification of ocular, structural changes will improve our understanding of SANS pathophysiology. Methods were developed to quantify 3D optic nerve (ON) and ON sheath (ONS) geometries, ON tortuosity, and posterior globe deformation using MR imaging
Nuclear magnetic resonance as a quantitative tool to study interactions in biomacromolecules
High-resolution nuclear magnetic resonance (NMR) has emerged as one of the most versatile tools for the quantitative study of structure, kinetics, and thermodynamics of biomolecules and their interactions at atomic resolution. Traditionally, nuclear Overhauser enhancements (NOEs) and chemical shift perturbation methods are used to determine molecular geometries and to identify contact surfaces, but more recently, weak anisotropic orientation, anisotropic diffusion, and scalar couplings across hydrogen bonds provide additional information. Examples of such technologies are shown as applied to the quantitative characterization of function and thermodynamics of several biomacromolecules. In particular, (1) the structural and dynamical changes of the TipA multidrug resistance protein are followed upon antibiotic binding, (2) the trimer-monomer equilibrium and thermal unfolding of foldon, a small and very efficient trimerization domain of the T4 phagehead, is described in atomic detail, and (3) the changes of individual protein hydrogen bonds during thermal unfolding are quantitatively followed by scalar couplings across hydrogen bond
Desulfosporosinus lacus sp. nov., a sulfate-reducing bacterium isolated from pristine freshwater lake sediments
A novel sulfate-reducing bacterium was isolated from pristine sediments of Lake Stechlin, Germany. This strain, STP12 , was found to contain predominantly c-type cytochromes and to reduce sulfate, sulfite and thiosulfate using lactate as an electron donor. Although STP12 could not utilize elemental sulfur as an electron acceptor, it could support growth by dissimilatory Fe(III) reduction. In a comparison of 16S rRNA gene sequences, STP12 was 96.7 % similar to Desulfosporosinus auripigmenti DSM 13351 , 96.5 % similar to Desulfosporosinus meridiei DSM 13257 and 96.4 % similar to Desulfosporosinus orientis DSM 765 . DNA-DNA hybridization experiments revealed that strain STP12 shows only 32 % reassociation with the type strain of the type species of the genus, D. orientis DSM 765 . These data, considered in conjunction with strain-specific differences in heavy metal tolerance, cell-wall chemotaxonomy and riboprint patterns, support recognition of strain STP12 (=DSM 15449 =JCM 12239 ) as the type strain of a distinct and novel species within the genus Desulfosporosinus, Desulfosporosinus lacus sp. nov. © 2006 IUMS. T T T T T T T T T T
From oil field to geothermal reservoir: assessment for geothermal utilization of two regionally extensive Devonian carbonate aquifers in Alberta, Canada
The Canadian province of
Alberta has one of the highest per capita CO2-equivalent emissions
in Canada, predominantly due to the industrial burning of coal for the
generation of electricity and mining operations in the oil sands deposits.
Alberta's geothermal potential could reduce CO2 emissions by
substituting at least some fossil fuels with geothermal energy.The Upper Devonian carbonate aquifer systems within the Alberta Basin are
promising target formations for geothermal energy. To assess their
geothermal reservoir potential, detailed knowledge of the thermophysical and
petrophysical rock properties is needed. An analogue study was conducted on
two regionally extensive Devonian carbonate aquifers, the Southesk-Cairn
Carbonate Complex and the Rimbey-Meadowbrook Reef Trend, to furnish a
preliminary assessment of the potential for geothermal utilization. Samples
taken from outcrops were used as analogues to equivalent formations in the
reservoir and correlated with core samples of the reservoir. Analogue
studies enable the determination and correlation of facies-related rock
properties to identify sedimentary, diagenetic, and structural variations,
allowing for more reliable reservoir property prediction.Rock samples were taken from several outcrops of Upper Devonian carbonates
in the Rocky Mountain Front Ranges and from four drill cores from the
stratigraphically equivalent Leduc Formation and three drill cores of the slightly
younger Nisku Formation in the subsurface of the Alberta Basin. The samples
were analyzed for several thermophysical and petrophysical properties, i.e.,
thermal conductivity, thermal diffusivity, and heat capacity, as well as
density, porosity, and permeability. Furthermore, open-file petrophysical
core data retrieved from the AccuMap database were used for correlation.The results from both carbonate complexes indicate good reservoir conditions
regarding geothermal utilization with an average reservoir porosity of about
8 %, average reservoir permeability between 10−12 and
10−15 m2, and relatively high thermal conductivities
ranging from 3 to 5 W m−1 K−1. The most promising target
reservoirs for hydrothermal utilisation are the completely dolomitized reef
sections. The measured rock properties of the Leduc Formation in the
subsurface show no significant differences between the Rimbey-Meadowbrook
Reef Trend and the Southesk-Cairn Carbonate Complex. Differences between the
dolomitized reef sections of the examined Leduc and Nisku Formation are also
minor to insignificant, whereas the deeper basinal facies of the Nisku
Formation differs significantly.In contrast, the outcrop analogue samples have lower porosity and
permeability, likely caused by low-grade metamorphism and deformation during
the Laramide orogeny that formed the Rocky Mountains. As such, the outcrop
analogues are not valid proxies for the buried reservoirs in the Alberta
Basin.Taken together, all available data suggest that dolomitization enhanced the
geothermal properties, but depositional patterns and other diagenetic
events, e.g., fracturing, also played an important role.</p
Large-Scale Cryogenic Testing of Launch Vehicle Ground Systems at the Kennedy Space Center
The development of a new launch vehicle to support NASA's future exploration plans requires significant redesign and upgrade of Kennedy Space Center's (KSC) launch pad and ground support equipment systems. In many cases, specialized test equipment and systems will be required to certify the function of the new system designs under simulated operational conditions, including propellant loading. This paper provides an overview of the cryogenic test infrastructure that is in place at KSC to conduct development and qualification testing that ranges from the component level to the integrated-system level. An overview of the major cryogenic test facilities will be provided, along with a detailed explanation of the technology focus area for each facilit
Total Hydrocarbon Content (THC) Testing in Liquid Oxygen (LOX)
The measured Total Hydrocarbon Content (THC) levels in liquid oxygen (LOX) systems at Stennis Space Center (SSC) have shown wide variations. Examples of these variations include the following: 1) differences between vendor-supplied THC values and those obtained using standard SSC analysis procedures; and 2) increasing THC values over time at an active SSC test stand in both storage and run vessels. A detailed analysis of LOX sampling techniques, analytical instrumentation, and sampling procedures will be presented. Additional data obtained on LOX system operations and LOX delivery trailer THC values during the past 12-24 months will also be discussed. Field test results showing THC levels and the distribution of the THC's in the test stand run tank, modified for THC analysis via dip tubes, will be presented
Foreign Direct Investments in Business Services: Transforming the Visegrád Four Region into a Knowledge-based Economy?
Foreign direct investments (FDIs) in the service sector are widely attributed an important role in bringing more skill-intensive activities into the Visegrad Four (V4). This region—comprising Poland, the Czech Republic, Hungary and Slovakia—relied heavily on FDIs in manufacturing, which was often found to generate activities with limited skill content. This contribution deconstructs the chaotic concept of “business services” by analysing the actual nature of service sector activities outsourced and offshored to the V4. Using the knowledge-based economy (KBE) as a benchmark, the paper assesses the potential of service sector outsourcing in contributing to regional competitiveness by increasing the innovative capacity. It also discusses the role of state policies towards service sector FDI (SFDI). The analysis combines data obtained from case studies undertaken in service sector outsourcing projects in V4 countries. Moreover, it draws on interviews with senior employees of investment promotion agencies and publicly available data and statistics on activities within the service sector in the region. It argues that the recent inward investments in business services in the V4 mainly utilize existing local human capital resources, and their contribution to the development of the KBE is limited to employment creation and demand for skilled labour
- …