884 research outputs found
Black Holes, Mergers, and the Entropy Budget of the Universe
Vast amounts of entropy are produced in black hole formation, and the amount
of entropy stored in supermassive black holes at the centers of galaxies is now
much greater than the entropy free in the rest of the universe. Either mergers
involved in forming supermassive black holes are rare,or the holes must be very
efficient at capturing nearly all the entropy generated in the process.
We argue that this information can be used to constrain supermassive black
hole production, and may eventually provide a check on numerical results for
mergers involving black holes
Signature of chaos in gravitational waves from a spinning particle
A spinning test particle around a Schwarzschild black hole shows a chaotic
behavior, if its spin is larger than a critical value. We discuss whether or
not some peculiar signature of chaos appears in the gravitational waves emitted
from such a system. Calculating the emitted gravitational waves by use of the
quadrupole formula, we find that the energy emission rate of gravitational
waves for a chaotic orbit is about 10 times larger than that for a circular
orbit, but the same enhancement is also obtained by a regular "elliptic" orbit.
A chaotic motion is not always enhance the energy emission rate maximally. As
for the energy spectra of the gravitational waves, we find some characteristic
feature for a chaotic orbit. It may tell us how to find out a chaotic behavior
of the system. Such a peculiar behavior, if it will be found, may also provide
us some additional informations to determine parameters of a system such as a
spin.Comment: 14 pages, LaTeX, to appear in Phys. Rev.
Einstein and Brans-Dicke frames in multidimensional cosmology
Inhomogeneous multidimensional cosmological models with a higher dimensional
space-time manifold M= M_0 x M_1 ...x M_n are investigated under dimensional
reduction to a D_0-dimensional effective non-minimally coupled sigma-model
which generalizes the familiar Brans-Dicke model.
It is argued that the Einstein frame should be considered as the physical
one. The general prescription for the Einstein frame reformulation of known
solutions in the Brans-Dicke frame is given. As an example, the reformulation
is demonstrated explicitly for the generalized Kasner solutions where it is
shown that in the Einstein frame there are no solutions with inflation of the
external space.Comment: 27 pages, Revte
Dynamical evolution of boson stars in Brans-Dicke theory
We study the dynamics of a self-gravitating scalar field solitonic object
(boson star) in the Jordan-Brans-Dicke (BD) theory of gravity. We show
dynamical processes of this system such as (i) black hole formation of
perturbed equilibrium configuration on an unstable branch; (ii) migration of
perturbed equilibrium configuration from the unstable branch to stable branch;
(iii) transition from excited state to a ground state. We find that the
dynamical behavior of boson stars in BD theory is quite similar to that in
general relativity (GR), with comparable scalar wave emission. We also
demonstrate the formation of a stable boson star from a Gaussian scalar field
packet with flat gravitational scalar field initial data. This suggests that
boson stars can be formed in the BD theory in much the same way as in GR.Comment: 13 pages by RevTeX, epsf.sty, 16 figures, comments added, refs
updated, to appear in Phys. Rev.
Transgenic expression of the dicotyledonous pattern recognition receptor EFR in rice leads to ligand-dependent activation of defense responses
Plant plasma membrane localized pattern recognition receptors (PRRs) detect extracellular pathogen-associated molecules. PRRs such as Arabidopsis EFR and rice XA21 are taxonomically restricted and are absent from most plant genomes. Here we show that rice plants expressing EFR or the chimeric receptor EFR::XA21, containing the EFR ectodomain and the XA21 intracellular domain, sense both Escherichia coli- and Xanthomonas oryzae pv. oryzae (Xoo)-derived elf18 peptides at sub-nanomolar concentrations. Treatment of EFR and EFR::XA21 rice leaf tissue with elf18 leads to MAP kinase activation, reactive oxygen production and defense gene expression. Although expression of EFR does not lead to robust enhanced resistance to fully virulent Xoo isolates, it does lead to quantitatively enhanced resistance to weakly virulent Xoo isolates. EFR interacts with OsSERK2 and the XA21 binding protein 24 (XB24), two key components of the rice XA21-mediated immune response. Rice-EFR plants silenced for OsSERK2, or overexpressing rice XB24 are compromised in elf18-induced reactive oxygen production and defense gene expression indicating that these proteins are also important for EFR-mediated signaling in transgenic rice. Taken together, our results demonstrate the potential feasibility of enhancing disease resistance in rice and possibly other monocotyledonous crop species by expression of dicotyledonous PRRs. Our results also suggest that Arabidopsis EFR utilizes at least a subset of the known endogenous rice XA21 signaling components
Activation of the innate immune receptor Dectin-1 upon formation of a 'phagocytic synapse'.
Innate immune cells must be able to distinguish between direct binding to microbes and detection of components shed from the surface of microbes located at a distance. Dectin-1 (also known as CLEC7A) is a pattern-recognition receptor expressed by myeloid phagocytes (macrophages, dendritic cells and neutrophils) that detects β-glucans in fungal cell walls and triggers direct cellular antimicrobial activity, including phagocytosis and production of reactive oxygen species (ROS). In contrast to inflammatory responses stimulated upon detection of soluble ligands by other pattern-recognition receptors, such as Toll-like receptors (TLRs), these responses are only useful when a cell comes into direct contact with a microbe and must not be spuriously activated by soluble stimuli. In this study we show that, despite its ability to bind both soluble and particulate β-glucan polymers, Dectin-1 signalling is only activated by particulate β-glucans, which cluster the receptor in synapse-like structures from which regulatory tyrosine phosphatases CD45 and CD148 (also known as PTPRC and PTPRJ, respectively) are excluded (Supplementary Fig. 1). The 'phagocytic synapse' now provides a model mechanism by which innate immune receptors can distinguish direct microbial contact from detection of microbes at a distance, thereby initiating direct cellular antimicrobial responses only when they are required
- …