946 research outputs found
Biomass burning and pollution aerosol over North America: Organic components and their influence on spectral optical properties and humidification response
Thermal analysis of aerosol size distributions provided size resolved volatility up to temperatures of 400°C during extensive flights over North America (NA) for the INTEX/ICARTT experiment in summer 2004. Biomass burning and pollution plumes identified from trace gas measurements were evaluated for their aerosol physiochemical and optical signatures. Measurements of soluble ionic mass and refractory black carbon (BC) mass, inferred from light absorption, were combined with volatility to identify organic carbon at 400°C (VolatileOC) and the residual or refractory organic carbon, RefractoryOC. This approach characterized distinct constituent mass fractions present in biomass burning and pollution plumes every 5–10 min. Biomass burning, pollution and dust aerosol could be stratified by their combined spectral scattering and absorption properties. The “nonplume” regional aerosol exhibited properties dominated by pollution characteristics near the surface and biomass burning aloft. VolatileOC included most water-soluble organic carbon. RefractoryOC dominated enhanced shortwave absorption in plumes from Alaskan and Canadian forest fires. The mass absorption efficiency of this RefractoryOC was about 0.63 m2 g−1 at 470 nm and 0.09 m2 g−1 at 530 nm. Concurrent measurements of the humidity dependence of scattering, γ, revealed the OC component to be only weakly hygroscopic resulting in a general decrease in γ with increasing OC mass fractions. Under ambient humidity conditions, the systematic relations between physiochemical properties and γ lead to a well-constrained dependency on the absorption per unit dry mass for these plume types that may be used to challenge remotely sensed and modeled optical properties
Lava channel formation during the 2001 eruption on Mount Etna: evidence for mechanical erosion
We report the direct observation of a peculiar lava channel that was formed
near the base of a parasitic cone during the 2001 eruption on Mount Etna.
Erosive processes by flowing lava are commonly attributed to thermal erosion.
However, field evidence strongly suggests that models of thermal erosion cannot
explain the formation of this channel. Here, we put forward the idea that the
essential erosion mechanism was abrasive wear. By applying a simple model from
tribology we demonstrate that the available data agree favorably with our
hypothesis. Consequently, we propose that erosional processes resembling the
wear phenomena in glacial erosion are possible in a volcanic environment.Comment: accepted for publication in Physical Review Letter
Detection of the PAX3-FKHR fusion gene in paediatric rhabdomyosarcoma: a reproducible predictor of outcome?
Rhabdomyosarcoma has 2 major histological subtypes, embryonal and alveolar. Alveolar histology is associated with the fusion genes PAX3-FKHR and PAX7-FKHR. Definition of alveolar has been complicated by changes in terminology and subjectivity. It is currently unclear whether adverse clinical behaviour is better predicted by the presence of these fusion genes or by alveolar histology. We have determined the presence of the PAX3/7-FKHR fusion genes in 91 primary rhabdomyosarcoma tumours using a combination of classical cytogenetics, FISH and RT-PCR, with a view to determining the clinical characteristics of tumours with and without the characteristic translocations. There were 37 patients with t(2;13)/PAX3-FKHR, 8 with t(1;13) PAX7-FKHR and 46 with neither translocation. One or other of the characteristic translocations was found in 31/38 (82%) of alveolar cases. Univariate survival analysis revealed the presence of the translocation t(2;13)/PAX3-FKHR to be an adverse prognostic factor. With the difficulties in morphological diagnosis of alveolar rhabdomyosarcoma on increasingly used small needle biopsy specimens, these data suggest that molecular analysis for PAX3-FKHR will be a clinically useful tool in treatment stratification in the future. This hypothesis requires testing in a prospective study. Variant t(1;13)/PAX7-FKHR appears biologically different, occurring in younger patients with more localised disease. © 2001 Cancer Research Campaignhttp://www.bjcancer.co
A phase I study of nolatrexed dihydrochloride in children with advanced cancer. A United Kingdom Children's Cancer Study Group Investigation
A phase I study of nolatrexed, administered as a continuous 5 day intravenous infusion every 28 days, has been undertaken for children with advanced malignancy. 16 patients were treated at 3 dose levels; 420, 640 and 768 mg/m2 24 h−1. 8 patients were evaluable for toxicity. In the 6 patients treated at 768 mg/m2 24 h−1, dose-limiting oral mucositis and myelosuppression were observed. Plasma nolatrexed concentrations and systemic exposure, measured in 14 patients, were dose related, with mean AUC values of 36 mg−1 ml−1 min−1, 50 mg ml−1 min−1 and 80 mg ml−1 min−1at the 3 dose levels studied. Whereas no toxicity was encountered if the nolatrexed AUC was <45 mg ml−1 min−1, Grade 3 or 4 toxicity was observed with AUC values of >60 mg ml−1 min−1. Elevated plasma deoxyuridine levels, measured as a surrogate marker of thymidylate synthase inhibition, were seen at all of the dose levels studied. One patient with a spinal primitive neuroectodermal tumour had stable disease for 11 cycles of therapy, and in two patients with acute lymphoblastic leukaemia a short-lived 50% reduction in peripheral lymphoblast counts was observed. Nolatrexed can be safely administered to children with cancer, and there is evidence of therapeutic activity as well as antiproliferative toxicity. Phase II studies of nolatrexed in children at the maximum tolerated dose of 640 mg/m2 24 h−1are warranted. © 2001 Cancer Research Campaign http://www.bjcancer.co
Do dental nonmetric traits actually work as proxies for neutral genomic data? Some answers from continental- and global-level analyses
Objectives: Crown and root traits, like those in the Arizona State University Dental Anthropology System (ASUDAS), are seemingly useful as genetic proxies. However, recent studies report mixed results concerning their heritability, and ability to assess variation to the level of genomic data. The aim is to test further if such traits can approximate genetic relatedness, among continental and global samples. Materials and Methods: First, for 12 African populations, Mantel correlations were calculated between mean measure of divergence (MMD) distances from up to 36 ASUDAS traits, and FST distances from >350,000 single nucleotide polymorphisms (SNPs) among matched dental and genetic samples. Second, among 32 global samples, MMD and FST distances were again compared. Correlations were also calculated between them and inter-sample geographic distances to further evaluate correspondence. Results: A close ASUDAS/SNP association, based on MMD and FST correlations, is evident, with rm-values between .72 globally and .84 in Africa. The same is true concerning their association with geographic distances, from .68 for a 36-trait African MMD to .77 for FST globally; one exception is FST and African geographic distances, rm = 0.49. Partial MMD/FST correlations controlling for geographic distances are strong for Africa (.78) and moderate globally (.4). Discussion: Relative to prior studies, MMD/FST correlations imply greater dental and genetic correspondence; for studies allowing direct comparison, the present correlations are markedly stronger. The implication is that ASUDAS traits are reliable proxies for genetic data—a positive conclusion, meaning they can be used with or instead of genomic markers when the latter are unavailable
Role of small Rhizaria and diatoms in the pelagic silica production of the Sourther Ocean
We examined biogenic silica production and elementary composition (biogenic Si, particulate organic carbon and particulate organic nitrogen) of Rhizaria and diatoms in the upper 200 m along a transect in the Southwest Pacific sector of the Southern Ocean during austral summer (January–February 2019). From incubations using the 32Si radioisotope, silicic acid uptake rates were measured at 15 stations distributed in the Polar Front Zone, the Southern Antarctic Circumpolar Current and the Ross Sea Gyre. Rhizaria cells are heavily silicified (up to 7.6 nmol Si cell−1), displaying higher biogenic Si content than similar size specimens found in other areas of the global ocean, suggesting a higher degree of silicification of these organisms in the silicic acid rich Southern Ocean. Despite their high biogenic Si and carbon content, the Si/C molar ratio (average of 0.05 ± 0.03) is quite low compared to that of diatoms and relatively constant regardless of the environmental conditions. The direct measurements of Rhizaria's biogenic Si production (0.8–36.8 μmol Si m−2 d−1) are of the same order of magnitude than previous indirect estimations, confirming the importance of the Southern Ocean for the global Rhizaria silica production. However, diatoms largely dominated the biogenic Si standing stock and production of the euphotic layer, with low rhizarians' abundances and biogenic Si production (no more than 1%). In this manuscript, we discuss the Antarctic paradox of Rhizaria, that is, the potential high accumulation rates of biogenic Si due to Rhizaria in siliceous sediments despite their low production rates in surface waters.Versión del editor3,38
Direct exfoliation and dispersion of two-dimensional materials in pure water via temperature control
The high-volume synthesis of two-dimensional (2D) materials in the form of platelets is desirable for various applications. While water is considered an ideal dispersion medium, due to its abundance and low cost, the hydrophobicity of platelet surfaces has prohibited its widespread use. Here we exfoliate 2D materials directly in pure water without using any chemicals or surfactants. In order to exfoliate and disperse the materials in water, we elevate the temperature of the sonication bath, and introduce energy via the dissipation of sonic waves. Storage stability greater than one month is achieved through the maintenance of high temperatures, and through atomic and molecular level simulations, we further discover that good solubility in water is maintained due to the presence of platelet surface charges as a result of edge functionalization or intrinsic polarity. Finally, we demonstrate inkjet printing on hard and flexible substrates as a potential application of water-dispersed 2D materials.close1
- …