8,946 research outputs found

    Unbounded-Error Classical and Quantum Communication Complexity

    Full text link
    Since the seminal work of Paturi and Simon \cite[FOCS'84 & JCSS'86]{PS86}, the unbounded-error classical communication complexity of a Boolean function has been studied based on the arrangement of points and hyperplanes. Recently, \cite[ICALP'07]{INRY07} found that the unbounded-error {\em quantum} communication complexity in the {\em one-way communication} model can also be investigated using the arrangement, and showed that it is exactly (without a difference of even one qubit) half of the classical one-way communication complexity. In this paper, we extend the arrangement argument to the {\em two-way} and {\em simultaneous message passing} (SMP) models. As a result, we show similarly tight bounds of the unbounded-error two-way/one-way/SMP quantum/classical communication complexities for {\em any} partial/total Boolean function, implying that all of them are equivalent up to a multiplicative constant of four. Moreover, the arrangement argument is also used to show that the gap between {\em weakly} unbounded-error quantum and classical communication complexities is at most a factor of three.Comment: 11 pages. To appear at Proc. ISAAC 200

    1/f spectrum and memory function analysis of solvation dynamics in a room-temperature ionic liquid

    Full text link
    To understand the non-exponential relaxation associated with solvation dynamics in the ionic liquid 1-ethyl-3-methylimidazolium hexafluorophosphate, we study power spectra of the fluctuating Franck-Condon energy gap of a diatomic probe solute via molecular dynamics simulations. Results show 1/f dependence in a wide frequency range over 2 to 3 decades, indicating distributed relaxation times. We analyze the memory function and solvation time in the framework of the generalized Langevin equation using a simple model description for the power spectrum. It is found that the crossover frequency toward the white noise plateau is directly related to the time scale for the memory function and thus the solvation time. Specifically, the low crossover frequency observed in the ionic liquid leads to a slowly-decaying tail in its memory function and long solvation time. By contrast, acetonitrile characterized by a high crossover frequency and (near) absence of 1/f behavior in its power spectra shows fast relaxation of the memory function and single-exponential decay of solvation dynamics in the long-time regime.Comment: 10 pages, 4 figure

    The Formaldehyde Masers in Sgr B2: Very Long Baseline Array and Very Large Array Observations

    Get PDF
    Observations of two of the formaldehyde (H2CO) masers (A and D) in Sgr B2 using the VLBA+Y27 (resolution ~0.01") and the VLA (resolution ~9") are presented. The VLBA observations show compact sources (<10 milliarcseconds, <80 AU) with brightness temperatures >10^8 K. The maser sources are partially resolved in the VLBA observations. The flux densities in the VLBA observations are about 1/2 those of the VLA; and, the linewidths are about 2/3 of the VLA values. The applicability of a core-halo model for the emission distribution is demonstrated. Comparison with earlier H2CO absorption observations and with ammonia (NH3) observations suggests that H2CO masers form in shocked gas. Comparison of the integrated flux densities in current VLA observations with those in previous observations indicates that (1) most of the masers have varied in the past 20 years, and (2) intensity variations are typically less than a factor of two compared to the 20-year mean. No significant linear or circular polarization is detected with either instrument.Comment: 20 pages, 3 figures, 5 tables, accepted to Ap

    Surface enhanced resonance Raman and luminescence on plasmon active nanostructured cavities

    Get PDF
    Presented here are studies of the impact of excitation angle on surface enhanced Raman and luminescence spectroscopy of dye immobilised on a plasmon active nanocavity array support. Results show that both Raman and luminescence intensities depend on the angle of incidence consistent with the presence of cavity supported plasmon modes. Dependence of scattering or emission intensity with excitation angle occurs over the window of observation

    Resting state correlates of subdimensions of anxious affect

    Get PDF
    Resting state fMRI may help identify markers of risk for affective disorder. Given the comorbidity of anxiety and depressive disorders and the heterogeneity of these disorders as defined by DSM, an important challenge is to identify alterations in resting state brain connectivity uniquely associated with distinct profiles of negative affect. The current study aimed to address this by identifying differences in brain connectivity specifically linked to cognitive and physiological profiles of anxiety, controlling for depressed affect. We adopted a two-stage multivariate approach. Hierarchical clustering was used to independently identify dimensions of negative affective style and resting state brain networks. Combining the clustering results, we examined individual differences in resting state connectivity uniquely associated with subdimensions of anxious affect, controlling for depressed affect. Physiological and cognitive subdimensions of anxious affect were identified. Physiological anxiety was associated with widespread alterations in insula connectivity, including decreased connectivity between insula subregions and between the insula and other medial frontal and subcortical networks. This is consistent with the insula facilitating communication between medial frontal and subcortical regions to enable control of physiological affective states. Meanwhile, increased connectivity within a frontoparietal-posterior cingulate cortex-precunous network was specifically associated with cognitive anxiety, potentially reflecting increased spontaneous negative cognition (e.g., worry). These findings suggest that physiological and cognitive anxiety comprise subdimensions of anxiety-related affect and reveal associated alterations in brain connectivity

    Morphology and scaling in the noisy Burgers equation: Soliton approach to the strong coupling fixed point

    Full text link
    The morphology and scaling properties of the noisy Burgers equation in one dimension are treated by means of a nonlinear soliton approach based on the Martin-Siggia-Rose technique. In a canonical formulation the strong coupling fixed point is accessed by means of a principle of least action in the asymptotic nonperturbative weak noise limit. The strong coupling scaling behaviour and the growth morphology are described by a gas of nonlinear soliton modes with a gapless dispersion law and a superposed gas of linear diffusive modes with a gap. The dynamic exponent is determined by the gapless soliton dispersion law, whereas the roughness exponent and a heuristic expression for the scaling function are given by the form factor in a spectral representation of the interface slope correlation function. The scaling function has the form of a Levy flight distribution.Comment: 5 pages, Revtex file, submitted to Phys. Rev. Let

    Spin hydrodynamics in the S = 1/2 anisotropic Heisenberg chain

    Full text link
    We study the finite-temperature dynamical spin susceptibility of the one-dimensional (generalized) anisotropic Heisenberg model within the hydrodynamic regime of small wave vectors and frequencies. Numerical results are analyzed using the memory function formalism with the central quantity being the spin-current decay rate gamma(q,omega). It is shown that in a generic nonintegrable model the decay rate is finite in the hydrodynamic limit, consistent with normal spin diffusion modes. On the other hand, in the gapless integrable model within the XY regime of anisotropy Delta < 1 the behavior is anomalous with vanishing gamma(q,omega=0) proportional to |q|, in agreement with dissipationless uniform transport. Furthermore, in the integrable system the finite-temperature q = 0 dynamical conductivity sigma(q=0,omega) reveals besides the dissipationless component a regular part with vanishing sigma_{reg}(q=0,omega to 0) to 0

    Conserved Density Fluctuation and Temporal Correlation Function in HTL Perturbation Theory

    Full text link
    Considering recently developed Hard Thermal Loop perturbation theory that takes into account the effect of the variation of the external field through the fluctuations of a conserved quantity we calculate the temporal component of the Euclidian correlation function in the vector channel. The results are found to be in good agreement with the very recent results obtained within the quenched approximation of QCD and small values of the quark mass (0.1T\sim 0.1T) on improved lattices of size 1283×Nτ128^3\times N_\tau at (Nτ=40, T=1.2TCN_\tau=40, \ T=1.2T_C), (Nτ=48, T=1.45TCN_\tau=48, \ T=1.45T_C), and (Nτ=16, T=2.98TCN_\tau=16, \ T=2.98T_C), where NτN_\tau is the temporal extent of the lattice. This suggests that the results from lattice QCD and Hard Thermal Loop perturbation theory are in close proximity for a quantity associated with the conserved density fluctuation.Comment: 16 pages, 4 figures; One para added in introduction, Fig 1 modified; Accepted in Phys. Rev.

    A Search for H2CO 6cm Emission toward Young Stellar Objects III: VLA Observations

    Full text link
    We report the results of our third survey for formaldehyde (H2CO) 6cm maser emission in the Galaxy. Using the Very Large Array, we detected two new H2CO maser sources (G23.01-0.41 and G25.83-0.18), thus increasing the sample of known H2CO maser regions in the Galaxy to seven. We review the characteristics of the G23.01-0.41 and G25.83-0.18 star forming regions. The H2CO masers in G23.01-0.41 and G25.83-0.18 share several properties with the other known H2CO masers, in particular, emission from rich maser environments and close proximity to very young massive stellar objects.Comment: Accepted for publication in the Astrophysical Journal Supplement Serie

    Regulation of phosphate transport in proximal tubules

    Get PDF
    Homeostasis of inorganic phosphate (Pi) is primarily an affair of the kidneys. Reabsorption of the bulk of filtered Pi occurs along the renal proximal tubule and is initiated by apically localized Na+-dependent Pi cotransporters. Tubular Pi reabsorption and therefore renal excretion of Pi is controlled by a number of hormones, including phosphatonins, and metabolic factors. In most cases, regulation of Pi reabsorption is achieved by changing the apical abundance of Na+/Pi cotransporters. The regulatory mechanisms involve various signaling pathways and a number of proteins that interact with Na+/Pi cotransporter
    corecore