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Abstract Homeostasis of inorganic phosphate (Pi) is
primarily an affair of the kidneys. Reabsorption of the bulk
of filtered Pi occurs along the renal proximal tubule and is
initiated by apically localized Na+-dependent Pi cotrans-
porters. Tubular Pi reabsorption and therefore renal excre-
tion of Pi is controlled by a number of hormones, including
phosphatonins, and metabolic factors. In most cases,
regulation of Pi reabsorption is achieved by changing the
apical abundance of Na+/Pi cotransporters. The regulatory
mechanisms involve various signaling pathways and a
number of proteins that interact with Na+/Pi cotransporters.
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Introduction

If one considers the diversity of biological functions of
inorganic phosphate (Pi,) it should come as no surprise that
an organism requires mechanisms to maintain the extracel-
lular Pi reasonably constant. Deviations of the extracellular
concentration of Pi will impair a variety of physiological
processes such as bone metabolism, cellular energetics,
protein synthesis, and signaling cascades. In humans, both
hypo- and hyperphosphatemia have severe clinical con-

sequences that underscore the need for stable and well-
managed Pi homeostasis [51, 62].

In mammals, including humans, plasma concentration of
Pi is determined by the intestinal intake of Pi, the excretion
of Pi via the feces, the release of Pi from bone and soft
tissue, and the renal excretion of Pi. It is the latter
mechanism that is of greatest importance for whole body
homeostasis of Pi and therefore needs to be tightly
controlled. In quantitative terms, human kidneys filter
approximately 200 mmol (or ∼20 g) of Pi per day. In the
steady state, approximately 15% or 30 mmol (∼3 g) Pi of
the filtered load is excreted by the kidneys. Under
physiological equilibrium conditions, the total daily renal
and fecal Pi excretion is approximately equal to the amount
of intestinally absorbed Pi for a normal diet. However, renal
excretion of Pi does not always operate at a constant rate,
but it is permanently adjusted according to the daily
fluctuations of numerous hormones, including the recently
described phosphatonins, and metabolic factors [11, 108,
12] (Table 1). This implies that the transporters involved in
reabsorbing Pi in the proximal tubule are subject to
regulatory pathways that (in most cases) affect the
abundance of apical Na+/Pi cotransporters [84, 108].
Moreover, growth and age as factors affecting renal Pi
handling must also be considered as potential regulators of
Pi transporters [110].

This review focuses on those Na+/Pi cotransporters
localized in the apical membrane of proximal tubules that
are involved in the renal Pi reabsorption and which respond
to Pi homeostatic regulatory factors. In this context, we will
concentrate on the mechanisms that regulate Pi excretion
via modification of apical expression of Na+/Pi cotrans-
porters under both normal physiological and pathophysio-
logical conditions. As most of the data comes from studies
on rodents, one should exercise caution when extrapolating
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the conclusions to higher mammals, including humans. For
more integrated views of whole body Pi homeostasis and
specific details of genetic and acquired diseases that impair
renal Pi handling, the reader should refer to the following
articles [14, 17, 55, 70, 91, 108, 113, 117, 126].

Localization and composition of the renal machinery
for Pi reabsorption

The Pi concentration in the glomerular ultrafiltrate is
approximately equal to that in the plasma. Under normal
physiological conditions, approximately 80% of Pi
contained in the primary urine is reabsorbed unidirection-
ally along the proximal tubules. The amount of Pi
reabsorbed in proximal convoluted tubules is up to
threefold higher than that in proximal straight tubules.
There is no evidence for reabsorption of Pi along the loop
of Henle, but some Pi may be absorbed along distal tubular
segments; however, the identity of the distal tubular
transporters is unknown. Moreover, it is unclear if Pi
handling in the distal nephron is relevant for the systemic
control of Pi [for review see, 11, 108].

Uptake of Pi at the brush border membrane of proximal
tubular cells is strictly dependent on the presence of Na+

ions [121], which indicates that there is no paracellular
transport of Pi via cell–cell contact sites. Indeed, all Pi
transporter proteins identified so far and that are localized at
the brush border membrane of proximal tubule cells are
Na+-dependent. They mediate secondary-active transport
by coupling to the free energy of the transmembrane Na+

gradient that is maintained by the Na+/K+-ATPase localized
at the basolateral membrane (Fig. 1). In theory, this would
allow sufficient accumulation of Pi within the cell to
provide the driving force for the exit step(s) of Pi at the
basolateral side. No detailed information is currently
available about the intracellular concentration of free Pi or
the molecular identity of Pi transporters localized at the
basolateral membrane.

It has been established that Na+/Pi cotransport through
the brush border membrane is mediated chiefly by gene
products of the solute carrier family SLC34 [83]; designat-
ed SLC34A1 (NaPi-lla) and SLC34A3 (NaPi-llc). Both
SLC34A1 and SLC34A3 are localized at the brush border
membrane of proximal tubule cells and have not been
detected in other segments of the nephron [32, 99]. Under
normal dietary conditions, these proteins are most abundant
in S1 segments of both cortical and juxtamedually
nephrons, with the highest abundance in the latter. In
contrast to NaPi-lla, which gradually decreases along the
entire length of the proximal tubule, NaPi-llc has not been
detected in the S3 segments of rat and mouse kidneys
(Fig. 1) [32, 90].

A gene product of the solute carrier family 17
(SLC17A1 or NaPi-1) was identified based on Na+/Pi
cotransport in an expression cloning study using Xenopus
laevis oocytes and was also localized to the brush border
membranes of proximal tubules [33]. However, follow-up
studies indicated that this cotransporter is most likely not
involved in proximal tubular reabsorption of Pi, but rather
in the transport of organic ions [21].

Finally, recent findings indicate that a gene product of
the solute carrier family 20 (SLC20A2 or PiT-2) [29])
should also be considered as a potential candidate for
proximal tubular Pi reabsorption, as this protein was
localized exclusively at the brush border membrane of

Fig. 1 The renal Pi-reabsorption machinery in rat and mouse
proximal tubules. Na+/Pi-cotransporters NaPi-lla, NaPi-llc and Pit-2
are localized at the brush borders of proximal tubules. NaPi-lla and
Pit-2 proteins are detected in S1, S2 and S3 segments, whereas NaPi-
llc cotransporter is absent in S3 segments

Table 1 Factors affecting proximal tubular phosphate reabsorption

Reabsorption decreased by Reabsorption increased by

Parathyroid hormone Growth hormone
Dopamine Insulin-like growth factor
Phosphatonins (FGF-23;
sFRP-4; MEPE)

1,25(OH)2D3

Glucocorticoids Phosphate depletion
Atrial Natriuretic Peptide
Phosphate loading
Metabolic acidosis
Carbonic anhydrase inhibitors
Estrogen
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proximal tubules (Villa-Bellosta R, Ravera S, et al.,
unpublished observations). Its contribution to proximal
tubule Pi reabsorption and significance for whole body Pi
homeostasis remain to be determined.

How do different Na+/Pi cotransporters contribute
to renal Pi reabsorption?

Recent studies indicate that to answer this question, we
must take account of the species and developmental stage
of the animals under investigation. Furthermore, the finding
that NaPi-lla, NaPi-llc, and Pit-2 show different time
courses of dietary or hormonal regulation suggests that the
underlying signaling pathways differ.

Knockout of the gene encoding NaPi-lla (Npt2) established
that in adult mice, Pi reabsorption is mediated largely by
NaPi-lla [7]. In brush border membrane vesicles (BBMV’s)
isolated from Npt2−/− mice, Na+-dependent Pi uptake was
reduced by 70%, which could account for the observed
hypophosphatemic state of these animals. The remaining
30% of Na+/Pi cotransport in BBMV’s has been attributed
to the activity of NaPi-llc as its abundance increased in
Npt2−/− mice [115]. Taken together, these observations
suggested that in adult wild-type mice, Na+/Pi cotransport
via NaPi-llc plays only a marginal role. In agreement, NaPi-
llc abundance was found to be highest in weaning mice and
decreased with age [99]. This conclusion is further supported
by the lack of a phenotype in NaPi-llc−/− mice [79].

In humans, particularly adults, the contribution of the
NaPi-IIc to renal reabsorption of Pi and to whole body Pi
homeostasis appears to be more important than in mice.
Mutations in the SLC34A3 gene have been described in
patients with hereditary hypophosphatemic rickets with
hypercalcuria (HHRH) by two independent studies [9, 75].
The renal wasting of Pi associated with this disease can
therefore be correlated with an impaired function of NaPi-
llc. This suggests that in adult humans, NaPi-llc contributes
significantly to renal Pi reabsorption under normal steady-
state conditions.

On the basis of in situ hybridization, expression of both
members of the SLC20 family [29], Pit-1 and Pit-2, was
detected along the entire nephron [116]. As noted above,
the Pit-2 protein was recently localized in the brush border
membranes of proximal tubules (Villa-Bellosta R, Ravera S
et al., unpublished observations), but its contribution to
renal Pi reabsorption remains unknown.

Na+/Pi cotransporters at work

The transport kinetics of NaPi-lla, NaPi-llc, and Pit-1, -2
have been characterized in detail using the Xenopus laevis

oocyte expression system [for review see 38, 124]. All four
proteins prefer Na+ ions as the driving substrate, and Pi as
the driven substrate, yet there are important differences that
could influence their respective physiological functions.

First, NaPi-IIa is electrogenic, whereas NaPi-IIc is
electroneutral. This finding is consistent with their different
transport stoichiometries. Both prefer divalent Pi (HPO4

=);
NaPi-lla displays a Na+:Pi stoichiometry of 3:1, whereas for
NaPi-llc, the stoichiometry is 2:1. Thus, the electrogenicity
of NaPi-lla arises from the translocation of an additional
Na+ ion, at greater energetic cost to the cell. Despite this
fundamental difference, at neutral pH, both NaPi-IIa and
NaPi-IIc show similar apparent affinities for Na+(∼50 mM)
and Pi (<0.1 mM) as well as a qualitatively similar
decreased transport activity with external acidification [38,
124, 125].

Second, in contrast to NaPi-IIa/c, PiT-1/2 prefer mono-
valent Pi (H2PO4

−). Like NaPi-lla, both Pit-1 and Pit-2 are
electrogenic, yet Pit-1 has been shown experimentally to
display a 2:1 Na+:Pi stoichiometry. Apparent affinities for
Na+ are in the range of 50 to 70 mM and for Pi∼0.1 mM
[18, 93, 124]. Unlike NaPi-IIa/c, Li+ can also support Pi
translocation by PiT-1, but at a significantly reduced rate
and there is a weak affinity for arsenate [93].

Third, the pH dependence of NaP-lla and NaPi-llc is
similar; transport rates approximately double between
pH 6.5 and 8 [124]. Such a pH-dependence may have to
be considered when assessing renal excretion of Pi under
conditions of an altered acid base status of the body
[46, 87]. In contrast, the predicted maximum transport
velocity for Pit-1/2-mediated Na+/Pi cotransport is quite
constant within this pH range [93].

Finally, until recently, phosphonoformic acid (PFA) was
considered a general competitive inhibitor of Na+/Pi
cotransport [112]. Current data indicate that it inhibits only
Na+/Pi cotransport mediated by SLC34 family gene
products. The Ki for PFA is approximately tenfold higher
for PiT-1, -2 compared to that reported for NaPi-IIa. This
may be a direct consequence of the different preference for
Pi of the two families as PFA is expected to be divalent
under normal physiological conditions [93].

Currently, no information about the three-dimensional
structure of Na+/Pi cotransporters is available. Based on
extensive studies using cysteine scanning combined with
functional studies and in vitro transcription/translation
approaches, SLC34 proteins are predicted to comprise eight
transmembrane domains with intracellular N- and C-
termini. A large extracellular loop region links two halves
of the protein that contain conserved repeated sequences
also found in bacterial homologs. The repeats are proposed
to form opposed reentrant loops that most likely constitute
the transport pathway [38, 92, 124]. The secondary
structure of SLC20 proteins is less well defined: they are
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predicted to comprise ten transmembrane domains with
extracellular N- and C-termini, however evidence for an
obvious repeat region is so far lacking, and there is no
homology with the SLC34 gene products in the proposed
substrate translocation region [18, 98].

The functional unit of NaPi-lla is a monomer [63].
Interestingly, a split-ubiquitin yeast two-hybrid assay, and
subsequent studies provided evidence that NaPi-lla may
homodimerize [42]. Although apparently not relevant for
transport function, one can speculate that homotypic
interactions of NaPi-lla proteins may be of relevance for
the regulation of this cotransporter.

Apical positioning of Na+/Pi cotransporters

After correct targeting and insertion into the plasma
membrane of epithelial cells, specific protein–protein
interactions may be required to stabilize the final localiza-
tion of membrane proteins [130]. Classical yeast two-
hybrid screens performed against the C-terminus of NaPi-lla

revealed interactions of this cotransporter with several PDZ
domain (PSD-95, discs-large, ZO-1) containing proteins
that may contribute to the stabilization of NaPi-lla at the
apical membrane (Fig. 2b) [15, 42–44]. Robust interactions
of NaPi-lla with single PDZ domains of the sodium–
hydrogen exchanger regulatory factor (NHERF), protein
family [104], NHERF1 and 2, NHERF3 (PDZK1) and
NHERF4 (PDZK2) have been demonstrated in in vitro
studies. Members of the NHERF family were proposed to
scaffold several other membrane proteins, including trans-
porters and receptors as well [43, 44]. Furthermore,
NHERF1/2 bind to members of the merlin–ezrin–radixin–
moesin (MERM) protein family, thereby providing a link to
the cytoskeleton [104].

The interactions of NaPi-lla with PDZ domains of the
NHERF family were shown to be primarily via a class I
PDZ binding motif (TRL) located at the C-terminus [43,
44]. In opossum kidney (OK) cells, the TRL-motif was
shown to be required for apical expression [49]. The roles
of some of these interactions of NaPi-lla with PDZ proteins
have been elucidated using several mouse knockout

Fig. 2 Regulation of the NaPi-lla Na+/Pi-cotransporter. a Activation
of protein kinase dependent signaling pathways, e.g, by PTH or
dopamine, provoke internalization of NaPi-lla cotransporters at the
intermicrovillar clefts. Internalized NaPi-lla proteins are degraded in
the lysosomes. b Schematic illustration of the apical sorting and
positioning of NaPi-lla by PDZ proteins [15, 43, 44, 104]. The

recently suggested role of Gabarap in determining apical abundance of
NaPi-lla [94] is also indicated. c Modulation of the interaction of
NaPi-lla with NHERF1 by protein kinases activated by PTH.
Phosphorylation of NHERF1 [128] weakens the apparent affinity for
NaPi-lla, which is subsequently delivered to the endocytic machinery
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models. NHERF1−/− mice exhibited phosphaturia that could
be explained by a decrease of the apical abundance of
NaPi-lla [105]. These findings indicate a stabilization effect
of NHERF1 on the membrane expression of NaPi-lla. In
contrast, in NHERF2−/− mice, urinary excretion of Pi and
apical expression of NaPi-lla were unaffected under normal
physiological conditions [31]. Despite the robust in vitro
interactions of NaPi-lla with NHERF3, neither urinary
excretion of Pi nor the abundance of NaPi-lla was impaired
in NHERF3−/−mice [23].

In addition to the NHERF proteins, NaPi-lla also
interacts with the PDZ domain of Shank2E, a splice form
of Shank2 [78]. Shank2E is localized at the brush border
membrane of proximal tubule cells, and there is evidence
that it may be involved in the endocytic machinery that
determines the surface abundance of NaPi-lla.

A recent study revealed a role for the GABAA-receptor
associated protein (Gabarap) in determining the apical
amount of NaPi-lla [94]. In BBMV isolated from
Gabarap−/− mice, the amount of NaPi-lla was increased,
whereas NaPi-llc was unaffected. In agreement with these
findings, Na+/Pi cotransport was higher in BBMV’s from
Gabarap−/− animals, which was reflected in a reduced
urinary Pi excretion. The molecular mechanism underlying
the action of Gabarap is unknown. Gabarap may exert its
effect on he apical sorting as it interacts with the N-
ethylmaleimide-sensitive factor NSF [61]. Alternatively,
NHERF1 which was also up-regulated in Gabarap−/− mice
[94], may increase the stabilization of NaPi-lla in the brush
border membrane of these animals.

Currently, there is little information about proteins
interacting with NaPi-llc or Pit-2. NaPi-IIc was reported
to interact with NHERF1 and NHERF3 [123], the con-
sequences of these interactions for apical positioning and
regulation of NaPi-llc remain to be clarified.

Regulation of proximal tubular Na+/Pi cotransport

General considerations

Theoretical considerations predict that at equilibrium,
secondary active Na+/Pi cotransport across the brush border
membrane of proximal tubules would give rise to a
concentrating capacity of 100:1 for NaPi-llc and 10,000:1
for NaPi-lla [45, 124]. Although precise values for the
intracellular concentration of Pi are unavailable, it is
estimated to be in the lower millimolar range [14]. Thus,
for a given membrane protein density, the capacity of
proximal epithelia to reabsorb Pi is not determined by the
driving force but by the turnover rate of the transport cycle.
Alteration of Pi reabsorption therefore could be achieved
either by changes in the abundance of Na+/Pi cotransport-

ers, the apparent affinities for the substrates or the lipid
composition, which could influence the preferred confor-
mational state of the protein and modulate partial reactions
that constitute the transport cycle.

Most of the known effects of hormones and metabolic
factors (Table 1) on renal Pi absorption take place via
alterations of the abundance of Na+/Pi cotransporters within
the proximal brush border membrane. The membrane
abundance of a Na+/Pi cotransporter depends on the rate
of protein synthesis in the biosynthetic pathway, the rate of
insertion into the apical membrane and the rate of
endocytotic processes. Currently, we know more about
down-regulation (via endocytosis) of Na+/Pi cotransporters
(in particular NaPi-lla) than about the possible regulation of
the apical sorting and insertion of newly synthesized
cotransporters into the brush border membrane. In the
following section, we will present an overall picture of the
current knowledge about the acute hormonal regulation of
Na+/Pi cotransporters, such as, e.g., by parathyroid hor-
mone. Other important regulators of apical Na+/Pi cotrans-
porter abundance, such as phosphatonins, Pi diet and
steroids are discussed in separate sections. Finally, a few
cases in which changes of renal excretion of Pi do not
match alterations of apical abundance of Na+/Pi cotrans-
porters will be discussed.

Changes in renal Pi excretion related to alterations
of Na+/Pi cotransporter abundance

Parathyroid hormone

The paradigm for the alteration of the apical abundance of
Na+/Pi cotransporters is represented by the regulation of the
NaPi-lla protein by parathyroid hormone (PTH) (Fig. 2a).
Upon stimulation of PTH receptors, a decrease of apical
NaPi-lla abundance occurs within minutes, without changes
in mRNA levels [4, 58]. In contrast, several hours are
required for a PTH-induced redistribution of NaPi-llc [90,
103]. This indicates that (at least in rodents) acute
adjustment of renal Pi reabsorption by PTH occurs mostly
by a redistribution of NaPi-lla. So far, no regulation of Pit-2
by PTH in proximal tubules has been described.

Stimulation of PTH receptors leads to a rapid internal-
ization of NaPi-lla via an endocytotic machinery located at
the intermicrovillar clefts that was not associated with fluid
phase uptake, but was shown to be mechanistically similar
to a receptor-mediated process that involves clathrin-coated
vesicles [4]. Although putative endocytic motifs such as
tyrosine- or di-leucine-based motifs are contained within
the amino acid sequence of NaPi-lla, mutations of these
motifs did not affect the retrieval of NaPi-lla [50]. Instead, a
dibasic amino acid motif (KR), most likely localized within
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an intracellular loop, was found to be required for
internalization and degradation of NaPi-lla [56]. The
absence of this KR motif in the NaPi-llc protein could
explain the different endocytic rates of the NaPi-lla and
NaPi-llc cotransporters after PTH stimulation. It is of
interest that the peroxisomal farnesylated protein PEX19
was reported to interact with NaPi-lla via the KR motif, yet
the precise role of PEX19 in the trafficking of NaPi-lla has
not been elucidated [54].

Unlike megalin [28], internalized NaPi-lla is not deliv-
ered to recycling subapical endosomes but, instead, is
routed from the early endosomes to the lysosomes where it
is degraded [4, 59, 89] (Fig. 2a). No lysosomal association
of NaPi-llc was detected after stimulation with PTH [90,
103], which again indicates that any intracellular trafficking
of NaPi-llc after hormonal stimulation differs from that of
NaPi-lla.

Several observations suggest that the final reaction(s) of
the PTH-induced signaling cascades leading to NaPi-IIa
endocytosis may affect the affinity of the cotransporter for
its interacting proteins. The signaling cascades involved in
the action of PTH have been well described. Receptors for
PTH are localized both at the apical and the basolateral site
of proximal tubular cells and differ with respect to their
activation by different PTH fragments and formation of
intracellular second messengers [41]. Stimulation of baso-
lateral PTH receptors by 1–34 PTH (via Gs) provokes an
increase of the intracellular cAMP concentration and
activation of protein kinase A-dependent pathways, where-
as stimulation of apical PTH receptors by 1-34 PTH or 3-34
PTH (via Gq) results in the hydrolysis of PIP2 and
activation of pathways involving protein kinase C activity.
Experiments performed on isolated rat proximal tubules
indicated that stimulation of both, apical and basolateral
PTH receptors, elicits a down-regulation of NaPi-lla [119].
Apical PTH receptors are part of a signaling complex
scaffolded by NHERF1 that also includes phospholipase
PLCß2 [77]. The importance of such a spatial arrangement
for the hormonal regulation of the abundance of NaPi-lla
was demonstrated in experiments using kidney slices
derived from NHERF1 −/− mice. The coupling of apical
PTH receptors to the down-regulation of NaPi-lla was
completely abolished in the absence of NHERF1, whereas
down-regulation of NaPi-lla induced by a stimulation of
basolateral PTH receptors (via cAMP) remained intact [22].

In addition to PKA and PKC pathways, regulation of the
amount of NaPi-lla by a pathway that involves protein
kinase G should also be considered. Early studies docu-
mented that part of the renal response to the atrial
natriuretic factor (ANF) includes changes of Na+/Pi
cotransport [48]. Later, it was demonstrated that increases
of cGMP concentrations induced by ANP or by nitric oxide
(NO) resulted in a down-regulation of NaPi-lla [3].

An involvement of MAPK (ERK1/2) kinases in the PTH
action has been suggested from experiments performed
with opossum kidney (OK) cells [67]. Moreover, in ex vivo
studies, using mouse kidney slices, down-regulation of
NaPi-lla initiated by 1-34 PTH was partially prevented by
the ERK1/2 inhibitor PD098059 [5]. Similarly, down-
regulation of NaPi-lla was partially inhibited by this blocker
when PKC or PKG pathways were pharmacologically
activated separately. In contrast, inhibition of ERK1/2
completely abolished endocytosis of NaPi-lla in response
to direct activation of PKA [5]. Based on these observa-
tions, we can envisage a central role of the MAPK pathway
as a point where the different pathways (PKA, PKC, and
PKG) may converge (Fig. 2a). Interestingly, inhibition of
renal Pi reabsorption by FGF-23 (see below) was also
reported to involve activation of the MAPK kinase pathway
[129].

Is MAPK always required for down-regulation of NaPi-
lla? Investigations related to the phosphaturic effect of
dopamine [39] demonstrated that dopamine elicits a down-
regulation of NaPi-lla via stimulation of apical dopamine
receptors D1 [2]. This D1-receptor-mediated effect on
NaPi-lla abundance was completely prevented by a blocker
of PKA (H89) but not by inhibiting ERK1/2 MAPK
kinases, which indicates that cAMP dependent pathways
relevant for down-regulation of NaPi-lla may differ,
depending on which receptor is activated (Fig. 2a).

The subcellular location of NHERF proteins remains
unaffected after PTH treatment. The implication of different
kinases in the signaling cascades described above suggest
that the stability of NaPi-IIa within apical heteromultimeric
protein complexes, such as the one scaffolded by NHERF1,
may be altered by protein phosphorylation. Studies address-
ing this question revealed that NaPi-lla was not phosphor-
ylated either basally or upon stimulation by PTH [34].
However, increased phosphorylation of NHERF1 in re-
sponse to PTH has been observed in murine kidney slices
and suggested that phosphorylation of NHERF1 could
induce a dissociation of the NaPi-lla/NHERF1 complex
[34]. Recently, a more detailed study demonstrated that
after activation of PKC and PKA pathways, a serine residue
(Ser77) within the first PDZ domain of NHERF1 was
phosphorylated [128] (Fig. 2c). Phosphorylation of Ser77
upon activation of PKC appeared to occur more directly
compared to the PKA effect. Because NaPi-lla interacts
with the first PDZ domain of NHERF1 [43, 44] and Ser77
is located within the predicted binding domain, phosphor-
ylation of Ser77 is thought to induce a conformational
change resulting in a lowered affinity of the NaPi-lla/
NHERF1 interaction. In this respect, it is interesing to note
that truncation of the PDZ binding motif of the CFTR
channel increased its diffusional mobility within the
membrane [47]. Similarly, by promoting phosphorylation
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of NHERF1, PTH (and possibly other factors) could induce
an increase of the mobility of NaPi-lla along the microvillus
axis that may be required for internalization at the
intermicrovillar clefts.

Phosphatonins

Tumor-induced osteomalacia (TIO), autosomal-dominant
hypo-phosphatemic rickets (ADHR), recessive hyperphos-
phatemic rickets (ARHR) and X-linked hypophosphatemic
rickets (XLH) are associated with phosphaturia and defects
in bone metabolism [126]. Associated with these diseases,
various new factors, termed phosphatonins, have been
identified and were shown to be involved in the observed
renal Pi wasting. So far, the list of phosphatonins comprises
fibroblast growth factor 23 (FGF-23), secreted frizzled
related protein-4 (sFRP-4), matrix extracellular phosphogly-
coprotein (MEPE), and fibroblast growth factor 7 (FGF-7).
The roles of phosphatonins in whole body Pi-homeostasis
under pathophysiological conditions has recently been
reviewed [12, 17, 55, 91, 117, 126]. However, apart from
their roles in disease conditions, phosphatonins may exert
regulatory functions on renal Pi reabsorption also under
normal physiological conditions, whereby interference by
other factors cannot be excluded [97, 106, 107, 109].
Overall, little is known about the signaling pathways of
phosphatonins in proximal tubule cells that result in
alterations of the abundance of Na+/Pi cotransporters.
Current knowledge about the cellular mechanisms is briefly
discussed below.

Fibroblast growth factor FGF-23 FGF-23 was identified in
patients with autosomal dominant hypophosphatemic rickets
(ADHR) by positional cloning [30]. The phosphaturic effect
observed at elevated serum levels of FGF-23 correlated
with a decrease of the abundance of NaPi-lla and NaPi-llc
[79, 80]. Moreover, FGF23−/− mice display the converse
behavior with increased Pi reabsorption and hyperphosphate-
mia [107]. In ex vivo studies, using isolated proximal tubules,
FGF-23 was reported to reduce NaPi-lla abundance [6].

FGF-23 likely activates one of the known c-splice
isoforms of FGF receptors (FGFR). Some in vitro studies
suggested the interaction of FGF-23 with FGFR’s 1c, 3c ,
and 4c; however, the identity of the FGFR responsible for
the action of FGF-23 in proximal tubules is currently
unknown. FGF-23 receptors belong to the family of
receptor tyrosine kinases, and its activation appears to be
dependent on the presence of sugar chains such as those
contained in heparin or klotho [65, 66, 74]. It is significant
that klotho (see below) is required for the conversion of
canonical FGFR’s into functional FGF-23 receptors [122].
The importance of klotho for FGF-23 action was further
suggested from observations made using a klotho−/− mouse

model that develops a phenotype similar as FGF-23−/− mice
[102]. In klotho−/− mice, the increase of serum Pi
concentration could be correlated with increased abundan-
ces of NaPi-lla and NaPi-llc despite a massive increase of
FGF-23 serum levels.

Studies in OK cells provided evidence that the signaling
pathway activated by FGF-23 involves MAPK/ERK1-2
kinases [129]. Similarly as described for the PTH-induced
signaling pathway (see above), the action of FGF-23 was
blocked by inhibitors of ERK1/2. In addition, in isolated
proximal tubules, FGF-23 was reported to provoke an
increase of the production of prostaglandin PGE2 that was
also suggested to occur via the MAPK/ERK pathway [111].

Secreted frizzled-related protein-4 Secreted frizzled-related
protein-4 (sFRP-4) is overexpressed in TIO patients
presenting renal Pi wasting [for review see 12]. Infusion
of sFRP-4 into rodents was shown to provoke phosphaturia
that could be correlated with a decrease of NaPi-lla [10].
sFRP-4 is an antagonist of the Wnt pathway and, indeed,
after infusion of sFRP-4, a decrease of the phosphorylated
form of ß-catenin was detected. However, the time course
and the precise mechanism by which sFRP-4 leads to
down-regulation of NaPi-IIa needs to be explored further.

Matrix extracellular phospho-glycoprotein and fibroblast
growth factor 7 Overexpression of two other factors matrix
extracellular phospho-glycoprotein (MEPE) and FGF-7, has
been noted in tumors of TIO patients as well [for review see
12]. MEPE was also identified in tissue from a patient with
oncogenic hypophosphatemic osteomalacia [95].
Conflicting results have been reported with respect to a
direct action of MEPE on renal Pi handling. A recent study
demonstrated that in rats, infusion of recombinant MEPE
elicited an increase of Pi excretion [35]. Together with data
obtained from cell culture experiments [96], it appears that
MEPE indeed participates in the control of proximal Pi
reabsorption. However, the precise mechanisms of the
action of MEPE are not known. Also, further investigation
will be required to establish if other factors regulating Pi
homeostasis also interact with the renal action of MEPE.

Only minimal information is available at present about
FGF-7 regarding its role in renal Pi wasting as observed in
TIO patients. Based on studies performed with OK-cells,
FGF-7 inhibits Na+/Pi cotransport [25].

Klotho

In addition to interaction with FGF receptors (see above),
klotho may exert direct effects on the abundance of Na+/Pi
cotransporters in proximal tubules. The extracellular do-
main of klotho, which is anchored by a single transmem-
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brane segment, shows ∼40% homology to ß-glycosidase
family-1 enzymes and thus may enyzmatically alter sugar
moieties of membrane proteins [118]. In kidneys, klotho is
expressed in distal convoluted tubules [65]. Interestingly,
the extracellular domain of klotho is shed from the
membrane and is detected in the blood, which indicates
that this domain may act as a humoral factor [53, 65, 85].
Evidence for a direct action of klotho on NaPi-lla abundance
was reported from in vitro experiments using microperfused
proximal tubules and isolated BBMV’s [52]. Most interest-
ingly, incubation of BBMV’s with klotho reduced Na+/Pi
cotransport activity, an effect most likely was due to a
change in the glycosylation of NaPi-lla itself. These
observations suggest that modification of the glycosylation
moieties of NaPi-lla may affect its apical stability, similar to
that described for the calcium channel TRPV5 [27].

Dietary Pi intake

It has long been known that changes in the dietary intake of
Pi affect renal excretion of Pi. Interestingly, the capacity of
renal Pi reabsorption adapts to altered intake of Pi within
less than an hour (acute adaptation) and remains adjusted
during prolonged intake of dietary Pi (chronic adaptation)
[71, 73].

Adaptation to altered Pi diet is independent of PTH,
vitamin D3, and growth hormones [19, 24, 71, 120].
However, analysis of the mechanisms involved in such
dietary adaptation can be complicated by the involvement
of other factors. For example, serum levels of FGF-23 were
reported to be dependent on the state of phosphatemia
[127]. Furthermore, studies performed with diabetic rats
indicated that insulin may have a permissive effect on the
adaptive response to low Pi diet as the increase of apical
Na+/Pi cotransport was abolished in these rats [1]. Also,
lowered plasma levels of Pi may affect the rates of
metabolic pathways of proximal tubular cells, such as for
example of gluconeogenesis [64].

Within the first four hours after ingestion of a low Pi
diet, brush border Na+/Pi cotransport increases due to an
increase of the amount of NaPi-lla [26, 71, 73]. Rapid up-
regulation induced by low Pi diet was also observed for Pit-
2 but not for NaPi-llc [79 and Ravera S et al., unpublished
observations]. Whereas acute changes of NaPi-IIa abun-
dance are independent of transcriptional regulation, contro-
versial findings regarding the chronic regulation have been
reported. In weaning mice, a chronic low Pi diet elevates
the amount of NaPi-lla mRNA in addition to protein
abundance. This effect was ascribed to a Pi responsive
element located within the promoter region of the Npt2
gene [60]. However, in adult mice fed chronically with a
low Pi diet an increase of NaPi-llc mRNA but not of NaPi-
lla mRNA was observed [76].

The signaling mechanisms involved in dietary regulation
are not fully understood. The rapid increase of brush border
Na+/Pi cotransport was not blocked by cycloheximide,
which suggests that de novo synthesis of Na+/Pi cotrans-
porters might not be necessary [73]. Yet, so far, there is no
clear evidence for the existence of an intracellular,
subapical pool of Na+/Pi cotransporters that could explain
the rapid adaptive phenomenon. Based on the observation
that the fall in the serum level of Pi after ingestion of a low
Pi diet precedes up-regulation of Na/Pi cotransport [73],
one might hypothesize the existence of one or more sensing
mechanism(s) for Pi that eventually may be located in the
proximal tubular cells.

Renal excretion of Pi decreases after ingestion of a diet
rich in Pi due to a reduction of apical Na+/Pi cotransporter
abundance. High Pi diet induces internalization of both
NaPi-lla and NaPi-llc, yet by distinct mechanisms. Whereas
the amount of NaPi-lla in BBMV’s was decreased after 2 h,
reduction of NaPi-llc was detectable only after 4 h. As
found for the PTH action, internalized NaPi-lla (by high Pi
diet) is routed to the lysosomes, whereas NaPi-llc is
redistributed from the BBMV to a subapical compartment
and does not undergo lysosomal degradation [59, 71, 101].

Acute regulation of renal Pi excretion has recently been
investigated after application of a Pi bolus directly into the
duodenum of rats [13]. This maneuver elicited an increase
of renal excretion of Pi already within 15 min. It is
noteworthy that this response preceded changes in the
plasma Pi, was independent of PTH and the phosphatonins
FGF-23 and sFRP-4 and was not observed in animals with
denervated kidneys. These data suggest that renal Pi
excretion may be part of an intestinal–renal axis that may
include a novel (humoral) factor originating from the
duodenal mucosa.

Steroid hormones

The influence of steroid hormones on renal Na+/Pi
cotransporters has been studied under chronic conditions.
Although chronically administered, steroids could act via
genomic mechanisms, nongenomic effects cannot be
excluded. Furthermore, it has to be considered that other
factors may be involved in the action of a particular steroid.

Glucocorticoids In addition to other effects in proximal
tubules, such as stimulation of the rate of gluconeogenesis,
glucocorticoids are also involved in the regulation of the
renal handling of Pi [36, 39, 108]. In kidneys from rats that
were treated chronically with dexamethasone, the amount
of NaPi-lla protein and mRNAwas decreased, in agreement
with increased excretion of Pi [72]. Furthermore, an inverse
correlation between Na+/Pi-cotransport in BBMV’s and
glucosylceramide and sphingolipid content was reported in
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these studies. It remains to be determined if glucocorticoids
may affect, besides NaPi-lla, other apical Na+/Pi cotrans-
porters as well.

Estrogen Chronic treatment of ovarectomized rats with
estrogen results in hypophosphatemia and hyperphospha-
turia. Renal wasting of Pi observed under these experimen-
tal conditions has been explained by reduced Na+/Pi
cotransport in BBMV’s due to a decrease of NaPi-lla
abundance [8, 37]. Moreover, estrogen treatment was
shown to decrease the abundance of NaPi-lla mRNA,
whereas NaPi-llc mRNA was unaffected. It remains to be
determined if the reported effect of estrogen on NaPi-lla is a
direct or indirect one. Although the effect on NaPi-lla was
reported to be independent of PTH [37], the reduction in
NaPi-lla abundance could result from an indirect action of
estrogen on dopamine receptors and/or the metabolism of
dopamine in proximal tubules [68].

1,25(OH)2-Vitamin D3 (VitD3) Although the profound
effects of VitD3 on the metabolisms and homeostasis of
calcium and phosphate are well described [20, 108],
conflicting results about direct effects of VitD3 on Pi
reabsorption in proximal tubules have been reported.

In thyroparathyroidectomized (TPTX) rats, chronic
administration of VitD3 was reported to inhibit Pi reab-
sorption in proximal tubules [82]. Although interference by
PTH was excluded in this study, more recent data suggest
that VitD3 action on renal Pi handling could be indirectly,
involving altered serum levels of phosphatonins [109]. For
example, in intact rats, repeated injections of VitD3 resulted
in an increase of serum levels of FGF-23 [106]. Further-
more, FGF-23 impairs the renal metabolism of VitD3 by
suppressing the expression of 25-hydroxyvitamin D 1α-
hydroxylase mRNA and by stimulation of the expression of
25-hydroxyvitamin D-24 hydroxylase mRNA [88, 107].

A VitD3 responsive element has been identified in the
promoter region of the human NaPi-lla gene, suggesting
that regulation of renal Pi reabsorption by VitD3 may occur
at the transcriptional level [114]. However, in VitD3
receptor and 1,α-OHase−/− mice, the abundance of the
NaPi-lla protein in BBMV was reported to be similar as the
one of wild-type mice [24, 100], which indicates that at
least in mice, the NaPi-lla abundance may not be controlled
by VitD3 dependent transcriptional mechanisms.

Changes in renal Pi excretion not related to alterations
of Na+/Pi cotransporter abundance.

Apart from the hormonal and metabolic settings that result
in a change of the abundance of Na+/Pi cotransporters as

discussed above, a few observations indicate that altered
renal Pi excretion can occur also without parallel changes
of the amount of apical Na/Pi cotransporters.

Potassium depletion

In rats depleted of potassium, Pi excretion was increased
and was in agreement with a decreased Na+/Pi cotransport
in isolated BBMV’s. However, this change of Na+/Pi
cotransport was not correlated with a reduced abundance
of NaPi-lla, but instead by increased amounts of NaPi-lla.
[131]. These contradictory findings were explained by an
alteration of the lipid composition, (e.g., glucosylceramide),
and altered fluidity of the brush border membrane.
Similarly, altered rates of Na+/Pi cotransport occurring
during aging and chronic adaptation to a dietary restriction
of Pi may also be explained partially by a change of
membrane fluidity due to an altered ratio of lipids to
cholesterol in the brush border membrane [69, 81].

Metabolic acidosis

Metabolic acidosis provokes an increase of Pi excretion [11,
108]. Transcriptome analysis revealed that NaPi-llc mRNA
is markedly down-regulated in mice after 2 days of
metabolic acidosis, less pronounced down-regulation was
observed for NaPi-lla mRNA [86]. In contrast, the
abundance of both proteins was increased, consistent with
higher Na+/Pi cotransport in BBMV isolated from acidotic
mice compared to control animals [87]. Increased urinary Pi
excretion was explained by a lower tubular pH-value that
decreases the transport rates of NaPi-lla/c.

Recovery after PTH treatment

In rats injected with a single bolus of PTH, fractional
excretion of Pi was maximally increased after 40 min and
recovered after 120 minutes. Whereas maximal excretion of
Pi correlated with a decrease of the abundance of NaPi-lla,
the levels of NaPi-lla did not recover parallel to the
recovery of Pi excretion [40]. These data indicate that the
rate of recovery of the amounts of Na+/Pi cotransporters
after interventions that provoke their internalization is an
important regulatory variable.

Circadian rhythm

Both serum concentration and renal excretion of Pi undergo
circadian variations [57]. In rats, fractional excretion of Pi
increased substantially between morning and late afternoon,
yet, a change in the abundance of NaPi-lla was not detected
[16]. Although part of this observation can be explained by
an increase of serum Pi during daytime, it remains to be
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shown if fluctuations of the amount of NaPi-llc and/or Pit-2
may contribute to the diurnal variations of Pi excretion.

Future directions—open questions

Other (Na)/Pi (co)transporters? Although several Na+/Pi
cotransporters have been localized at the brush border
membrane of proximal tubule cells, it is still possible that
additional cotransporters may be involved in Pi reabsorption
along PT’s. If so, it will be of interest to elucidate the
relative contribution of each transporter to renal Pi reab-
sorption in different species. Moreover, the often postulated
handling of tubular Pi in distal nephron segments remains to
be clarified. Another long-standing open question is the
molecular identity of the basolateral exit step of Pi.

Other phosphaturic factors? Recent investigations have
added new members to the list of the factors that regulate Pi
reabsorption. In the light of a systemic control of renal Pi
handling by different axis (bone-kidney, intestine-kidney and
eventually others) it is likely that more factors are about to
come under the spotlight. Furthermore, the possibility of (a)
Pi sensing mechanism(s) (Pi sensor?) remains unanswered.

Control of apical abundance? Although current data
suggest that phosphorylation reactions are involved in the
control of the apical abundance of Na+/Pi cotransporters,
e.g. by PTH, the signaling cascades of the diverse
hormones (including the phosphatonins) that control their
apical abundance remain to be elucidated. Moreover, the
cellular mechanisms involved in the rapid adaptive
responses to altered Pi diets need further investigation.

Trafficking of Na+/Pi cotransporters Related to the intra-
cellular trafficking of Na/Pi cotransporters the following
questions remain unanswered:

-How are Na+/Pi cotransporters sorted to the apical
membrane?
-Which mechanisms are involved in the routing of Na+/Pi
cotransporters (specifically NaPi-lla) from the subapical
compartment to the lysosomes?
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