447 research outputs found

    Affine cellularity of affine Hecke algebras of rank two

    Full text link
    We show that affine Hecke algebras of rank two with generic parameters are affine cellular in the sense of Koenig-Xi.Comment: 24 pages, 4 figures and 14 tables. New version: added references, corrected typos. Final versio

    Effect of swift heavy ion irradiations in polycrystalline aluminum nitride

    Get PDF
    13International audienceThanks to its high thermal conductivity, aluminum nitride may be a serious candidate as fuel coating for the Gas Fast Reactor. However, its behavior under irradiation is not entirely well understood. In order to catch a glimpse of this behavior, specimens were irradiated with swift heavy ions of different energies then characterised by both thermally stimulated luminescence and optical absorption spectrophotometry. With these techniques, the native defects, as well as those affected by irradiation, were identified: thus, by comparison to the virgin sample, no new defect detectable by these techniques is created by irradiations. Eventually, the fact that these techniques complement each other allowed to understand the effect of irradiation parameters on the defect concentration

    Hecke algebras with unequal parameters and Vogan's left cell invariants

    Full text link
    In 1979, Vogan introduced a generalised tau\\tau -invariant for characterising primitive ideals in enveloping algebras. Via a known dictionary this translates to an invariant of left cells in the sense of Kazhdan and Lusztig. Although it is not a complete invariant, it is extremely useful in describing left cells. Here, we propose a general framework for defining such invariants which also applies to Hecke algebras with unequal parameters.Comment: 15 pages. arXiv admin note: substantial text overlap with arXiv:1405.573

    Model-Based Inference and Classification of Immunologic Control Mechanisms from TKI Cessation and Dose Reduction in Patients with CML

    Get PDF
    Recent clinicalfindings in patients with chronic myeloid leukemia (CML) suggest that the risk of molecular recurrence after stopping tyrosine kinase inhibitor (TKI) treatment substantially depends on an individual's leukemia-specific immune response. However, it is still not possible to prospectively identify patients that will remain in treatment-free remission (TFR). Here, we used an ordinary differential equation model for CML, which explicitly includes an antileukemic immunologic effect, and applied it to 21 patients with CML for whom BCR-ABL1/ABL1 time courses had been quantified before and after TKI cessation. Immunologic control was conceptually necessary to explain TFR as observed in about half of the patients. Fitting the model simulations to data, we identified patient-specific parameters and classified patients into three different groups according to their predicted immune system configuration ("immunologic landscapes"). While one class of patients required complete CML eradication to achieve TFR, other patients were able to control residual leukemia levels after treatment cessation. Amongthem were a third class of patients that maintained TFR only if an optimal balance between leukemia abundance and immunologic activation was achieved before treatment cessation. Model simulations further suggested that changes in the BCR-ABL1 dynamics resulting from TKI dose reduction convey information about the patient-specific immune system and allow prediction of outcome after treatment cessation. This inference of individual immunologic configurations based on treatment alterations can also be applied to other cancer types in which the endogenous immune system supports maintenance therapy, long-term disease control, or even cure. Significance: This mathematical modeling approach provides strong evidence that different immunologic configurations in patients with CML determine their response to therapy cessation and that dose reductions can help to prospectively infer different risk groups.Peer reviewe

    The PhoP-Dependent ncRNA Mcr7 Modulates the TAT Secretion System in Mycobacterium tuberculosis

    Get PDF
    The PhoPR two-component system is essential for virulence in Mycobacterium tuberculosis where it controls expression of approximately 2% of the genes, including those for the ESX-1 secretion apparatus, a major virulence determinant. Mutations in phoP lead to compromised production of pathogen-specific cell wall components and attenuation both ex vivo and in vivo. Using antibodies against the native protein in ChIP-seq experiments (chromatin immunoprecipitation followed by high-throughput sequencing) we demonstrated that PhoP binds to at least 35 loci on the M. tuberculosis genome. The PhoP regulon comprises several transcriptional regulators as well as genes for polyketide synthases and PE/PPE proteins. Integration of ChIP-seq results with high-resolution transcriptomic analysis (RNA-seq) revealed that PhoP controls 30 genes directly, whilst regulatory cascades are responsible for signal amplification and downstream effects through proteins like EspR, which controls Esx1 function, via regulation of the espACD operon. The most prominent site of PhoP regulation was located in the intergenic region between rv2395 and PE_PGRS41, where the mcr7 gene codes for a small non-coding RNA (ncRNA). Northern blot experiments confirmed the absence of Mcr7 in an M. tuberculosis phoP mutant as well as low-level expression of the ncRNA in M. tuberculosis complex members other than M. tuberculosis. By means of genetic and proteomic analyses we demonstrated that Mcr7 modulates translation of the tatC mRNA thereby impacting the activity of the Twin Arginine Translocation (Tat) protein secretion apparatus. As a result, secretion of the immunodominant Ag85 complex and the beta-lactamase BlaC is affected, among others. Mcr7, the first ncRNA of M. tuberculosis whose function has been established, therefore represents a missing link between the PhoPR two-component system and the downstream functions necessary for successful infection of the host

    Evolutionary history of tuberculosis shaped by conserved mutations in the PhoPR virulence regulator

    Get PDF
    Although the bovine tuberculosis (TB) agent, Mycobacterium bovis, may infect humans and cause disease, long-term epidemiological data indicate that humans represent a spill-over host in which infection with M. bovis is not self-maintaining. Indeed, human-to-human transmission of M. bovis strains and other members of the animal lineage of the tubercle bacilli is very rare. Here, we report on three mutations affecting the two-component virulence regulation system PhoP/PhoR (PhoPR) in M. bovis and in the closely linked Mycobacterium africanum lineage 6 (L6) that likely account for this discrepancy. Genetic transfer of these mutations into the human TB agent, Mycobacterium tuberculosis, resulted in down-regulation of the PhoP regulon, with loss of biologically active lipids, reduced secretion of the 6-kDa early antigenic target (ESAT-6), and lower virulence. Remarkably, the deleterious effects of the phoPR mutations were partly compensated by a deletion, specific to the animal-adapted and M. africanum L6 lineages, that restores ESAT-6 secretion by a PhoPR-independent mechanism. Similarly, we also observed that insertion of an IS6110 element upstream of the phoPR locus may completely revert the phoPR-bovis–associated fitness loss, which is the case for an exceptional M. bovis human outbreak strain from Spain. Our findings ultimately explain the long-term epidemiological data, suggesting that M. bovis and related phoPR-mutated strains pose a lower risk for progression to overt human TB, with major impact on the evolutionary history of TB

    Effect of polysaccharides on the hydration of cement suspension

    Get PDF
    International audienceThis work compares the effects induced by polysaccharides on the hydration of cement. It also brings new insights into the interaction mechanisms between these two components. Several parameters such as structure, concentration, average molecular weight, and the soluble fraction value of the polysaccharides were examined. The hydration of cement was monitored by conductivity measurement, and ionic chromatography. The influence of polysaccharide structure on the kinetics of cement hydration was revealed. The extent of retardation increases when polysaccharide concentration rises. Dextrins with lower average molecular weights compared with starches favor a higher soluble fraction value and further retard hydration. The growth of hydrates seemed to be more affected by the presence of these admixtures than did the dissolution of anhydrous particles or the nucleation of former hydrate

    New dosing schedules of dasatinib for CML and adverse event management

    Get PDF
    Resistance to imatinib in patients with chronic myelogenous leukemia (CML) or Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph+ ALL) has emerged as a significant clinical issue. Dasatinib is a tyrosine kinase inhibitor that has 325-fold greater in vitro activity against native BCR-ABL (breakpoint cluster region-Abelson leukemia virus) compared with imatinib and can overcome primary (intrinsic) and secondary (acquired) imatinib resistance. Here, we review the clinical profile of dasatinib in imatinib-resistant and -intolerant patients and share clinical approaches for managing adverse events (AEs) to ensure maximum patient benefit. References were obtained through literature searches on PubMed as well as from the Proceedings of Annual Meetings of the American Society of Clinical Oncology, the American Society of Hematology, and European Hematology Association. Phase II and III studies of dasatinib in patients with imatinib-resistant or -intolerant CML in any phase or Ph+ ALL were selected for discussion. Dasatinib is currently indicated for the treatment of patients with imatinib-resistant or -intolerant CML or Ph+ ALL. AEs associated with dasatinib are typically mild to moderate, and are usually resolved with temporary treatment interruption and/or dose adjustments. A Phase III dose optimization study showed that in patients with chronic phase (CP) CML, 100 mg once-daily dasatinib improves the safety profile, particularly pleural effusion and thrombocytopenia, while maintaining efficacy compared with the previously recommended dose of 70 mg twice-daily. Dasatinib has a manageable safety profile. For patients with CP CML, a new recommended starting dose of 100 mg once daily has recently been approved. The recommended dose for patients with advanced CML or Ph+ ALL remains 70 mg twice daily
    • …
    corecore