
https://helda.helsinki.fi

Model-Based Inference and Classification of Immunologic

Control Mechanisms from TKI Cessation and Dose Reduction

in Patients with CML

Hähnel, Tom

2020-06-01

Hähnel , T , Baldow , C , Guilhot , J , Guilhot , F , Saussele , S , Mustjoki , S , Jilg , S , Jost ,

P J , Dulucq , S , Mahon , F-X , Roeder , I , Fassoni , A C & Glauche , I 2020 , '

Model-Based Inference and Classification of Immunologic Control Mechanisms from TKI

Cessation and Dose Reduction in Patients with CML ' , Cancer Research , vol. 80 , no. 11 ,

pp. 2394-2406 . https://doi.org/10.1158/0008-5472.CAN-19-2175

http://hdl.handle.net/10138/331937

https://doi.org/10.1158/0008-5472.CAN-19-2175

acceptedVersion

Downloaded from Helda, University of Helsinki institutional repository.

This is an electronic reprint of the original article.

This reprint may differ from the original in pagination and typographic detail.

Please cite the original version.



1 
 

Model-based inference and classification of immunological control mechanisms from TKI 
cessation and dose reduction in CML patients 
 
Tom Hähnel1, Christoph Baldow1, Joëlle Guilhot2, François Guilhot2, Susanne Saussele3, Satu 
Mustjoki4,5, Stefanie Jilg6, Philipp J. Jost6, Stephanie Dulucq7, François-Xavier Mahon8, Ingo 
Roeder1,9, Artur C. Fassoni10 *, Ingmar Glauche1 * 

 
1 Institute for Medical Informatics and Biometry, Carl Gustav Carus Faculty of Medicine, Technische 
Universität Dresden, Germany 
2 INSERM CIC 1402 - CHU Poitiers, France 

3 III. Medizinische Klinik, Universitätsmedizin Mannheim, Heidelberg University, Germany 

4 Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, 
Helsinki, Finland 
5 Translational Immunology Research Program and Department of Clinical Chemistry and 
Hematology, University of Helsinki, Helsinki, Finland  
6 III. Medizinische Klinik und Poliklinik, Klinikum rechts der Isar, Technische Universität München, 
Germany 
7 Laboratory of Hematology , University Hospital of Bordeaux, France 
8 Bergonie institute, INSERM U1218 University of Bordeaux, France 

9 National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany  
10 Instituto de Matemática e Computação, Universidade Federal de Itajubá, Brazil 
 

* these authors contributed equally 
 
Running title: Inferring immunological control mechanisms in CML patients 
 
Keywords: CML, immunological control, tyrosine kinase inhibitor, treatment stop, dose reduction, 
mathematical modelling 
 
 
Corresponding author: 
Ingmar Glauche 
Institute for Medical Informatics and Biometry  
Faculty of Medicine Carl Gustav Carus, Technical University Dresden  
Fetscherstrasse. 74, D-01307 Dresden  
phone: +49 (0) 351 458 6051, fax: +49 (0) 351 458 7222  
email: ingmar.glauche@tu-dresden.de 
 
 
abstract word count: 242 
word count: 5386 / 5000 
number of figures: 7 
  



2 
 

Financial support: This work was supported by the German Federal Ministry of Education and 
Research (www.bmbf.de/en/), Grant number 031A424 “HaematoOpt” to IR and Grant number 
031A315 “MessAge” to IG, as well as the ERA-Net ERACoSysMed JTC-2 project “prediCt” (project 
number 031L0136A) to IR. The research of ACF was supported by the Excellence Initiative of the 
German Federal and State Governments (Dresden Junior Fellowship) and by CAPES/Pós-
Doutorado no Exterior Grant number 88881.119037/2016-01. SM was supported by Finnish 
Cancer Organizations, Sigrid Juselius Foundation and Gyllenberg Foundation. 
 
 
Conflict of interest statement: IG received travel and research funding from Bristol-Myers Squibb 
(not related to this study); IR received honorarium, travel and research funding from Bristol-Myers 
Squibb (not related to this study). SM received honoraria and research funding from Bristol-Myers 
Squibb, Pfizer and Novartis (not related to this study). FG received honoraria from Novartis (not 
related to this study). SS received honoraria from Bristol-Myers Squibb, Incyte, Pfizer and Novartis 
and research funding from Bristol-Myers Squibb and Novartis (not related to this study). FXM is a 
consultant for Novartis and a speaker for Incyte biosciences, BMS, Novartis and Pfizer (not related 
to this study). The remaining authors declare no competing financial interests. 
 
  



3 
 

Significance (One sentence) 
This mathematical modelling approach provides strong evidence that different immunological 
configurations in CML patients determine their response to therapy cessation and that dose 
reductions can help to prospectively infer different risk groups. 
 
 
Abstract 
Recent clinical findings in chronic myeloid leukemia (CML) patients suggest that the risk of 
molecular recurrence after stopping tyrosine kinase inhibitor (TKI) treatment substantially depends 
on an individual’s leukemia-specific immune response. However, it is still not possible to 
prospectively identify patients that will remain in treatment-free remission (TFR). Here, we used an 
ordinary differential equation (ODE) model for CML, which explicitly includes an anti-leukemic 
immunological effect and applied it to 21 CML patients for whom BCR-ABL1/ABL1 time courses 
had been quantified before and after TKI cessation. Immunological control was conceptually 
necessary to explain TFR as observed in about half of the patients. Fitting the model simulations to 
data, we identified patient-specific parameters and classified patients into three different groups 
according to their predicted immune system configuration ("immunological landscapes”). While one 
class of patients required complete CML eradication to achieve TFR, other patients were able to 
control residual leukemia levels after treatment cessation. Among them were a third class of 
patients, that maintained TFR only if an optimal balance between leukemia abundance and 
immunological activation was achieved before treatment cessation. Model simulations further 
suggested that changes in the BCR-ABL1 dynamics resulting from TKI dose reduction convey 
information about the patient-specific immune system and allow prediction of outcome after 
treatment cessation. This inference of individual immunological configurations based on treatment 
alterations can also be applied to other cancer types in which the endogenous immune system 
supports maintenance therapy, long-term disease control or even cure. 
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Introduction 
 

Chronic myeloid leukemia (CML) is a myeloproliferative disorder, which is characterized by the 
unregulated proliferation of immature myeloid cells in the bone marrow. CML is caused by a 
chromosomal translocation between chromosomes 9 and 22. The resulting BCR-ABL1 fusion 
protein acts as constitutively activated tyrosine kinase triggering a cascade of protein 
phosphorylation, which deregulate cell cycle, apoptosis regulation, cell adhesion and genetic 
stability. Due to their unregulated growth and their distorted differentiation, immature leukemic cells 
accumulate and impair normal hematopoiesis in the bone marrow, leading to the patient’s death if 
left untreated.  
 
Tyrosine kinase inhibitors (TKIs) specifically target the kinase activity of the BCR-ABL1 protein with 
high efficiency and have been established as the first line treatment for CML patients (1). Individual 
treatment responses are monitored by measuring the proportion of BCR-ABL1 transcripts relative 
to a reference gene, e.g. ABL1 or GUS, in blood cell samples by using Reverse Transcription and 
quantitative real-time polymerase chain reaction (RT-qPCR) (2–4). Most patients show a typical bi-
exponential treatment response with a rapid, initial decline (α slope), followed by a moderate, 
second decline (β slope) (5–7). Whereas the initial decline can be attributed to the eradication of 
proliferating leukemic cells, the second decline has been suggested to result from a slower 
eradication of quiescent leukemic stem cells (3,4,8,9). Within five years of treatment, about two 
thirds of the patients achieve a major molecular remission (MMR), i.e. a BCR-ABL1 reduction of 
three logs from the baseline (MR3), while at least one third of these additionally achieve a deep 
molecular remission (DMR, i.e. MR4 or lower) (4,7,10). 
 
TKI discontinuation has been established as an experimental option for well responding patients 
with DMR for at least one year (11,12). Different studies independently confirmed that about half of 
the patients show a molecular recurrence, while the others stay in sustained treatment-free 
remission (TFR) after TKI stop. Consistently, most patients present with a recurrence within 6 
months, while only a few cases are observed thereafter (11–14). The overall good response of 
those patients after restarting treatment with the previously administered TKI indicates that clonal 
transformation and resistance occurrence is not a primary problem in CML. As it appears unlikely 
that even a sustained remission truly indicates a complete eradication of the leukemic cells, other 
factors have to account for a continuing control of a minimal, potentially undetectable residual 
leukemic load. Although treatment discontinuation is highly desirable to reduce treatment-related 
side-effects and lower financial expenditures (15,16), it is still not possible to prospectively identify 
those patients that are at risk for a molecular recurrence. Investigations of clinical markers and 
scores to predict the recurrence behavior of patients after the treatment cessation revealed that 
both TKI treatment duration and the duration of a DMR were also associated with a higher 
probability of TFR (11,13,17,18). However, it is still unclear whether the dynamics of the initial TKI 
treatment response (e.g. the initial slope of decline) correlate with the remission occurrence after 
treatment discontinuation. 
 
The underlying mechanisms of the recurrence behavior after TKI stop are still controversial. While 
fewer recurrences for patients with longer treatment suggest that a leukemic stem cell exhaustion 
is an important determinant, it is not a sufficient criteria to prospectively identify non-recurring 
patients (13,17). Favorable outcomes of treatment discontinuation for patients that were 
previously treated with immune-modulating drugs, such as IFN-D, suggest that immunological 
factors might play an additional and important role (11,18,19). In this context, it has been 
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demonstrated that specific subpopulations of dendritic cells and natural killer cells, as well as the 
cytokine secretion rate of natural killer cells are associated with higher probabilities of a treatment-
free remission (20,21). Furthermore, there are several reports about patients with low but 
detectable BCR-ABL1 levels over longer time periods after therapy discontinuation that do not 
relapse (14,22). This is a strong indicator that also other control mechanisms, such as the 
patient’s immune response, are important determinants of a TFR.  
 
Mathematical oncology has been established as a complementary effort to obtain insights into 
cancer biology and treatment. At the same time, model-based understanding of individual patient 
records is developing into a key method for devising adaptive therapies in the coming era of 
personalized medicine (23–26). CML is a show-case example, where several models have 
propelled the conceptual understanding of CML treatment dynamics (5–7,9,27–33) and are 
considered for the design of new clinical trials (34). Especially the long-term effect of TKI treatment 
on residual stem cell numbers and the effect of combination therapies were in focus. In a recent 
publication, we provided evidence that TKI dose reduction is a safe strategy for many patients in 
sustained remission while preserving the anti-leukemic effect (9). Complementary efforts also 
accounted for interactions between leukemic and immune cells (35–39). In a prominent approach, 
Clapp et al. used a CML-immune interaction to explain fluctuations of BCR-ABL1 transcripts in TKI-
treated CML patients (37). However, it remains elusive to which extend an immunological control is 
a crucial mediator to distinguish patients that maintain TFR from those that will eventually relapse. 
 
Here, we used BCR-ABL1 time courses of TKI-treated CML patients that were enrolled in 
previously published TKI discontinuation studies from different centers in Europe. In particular, we 
focused on patients for which complete time courses during the initial TKI therapy and after 
treatment cessation are available. Therefore, potential correlations between response dynamics, 
remission occurrences and timings after cessation become accessible. Motivated by the 
observation that the initial treatment response before TKI cessation does not show obvious 
correlations with remission occurrences,  we aim to explain the resulting dynamics in terms of an 
ordinary differential equation (ODE) model of TKI-treated CML. Explicitly including a patient-
specific, CML dependent immune component we are able to demonstrate that three different 
immunological configurations can determine the overall outcome after treatment cessation. We 
further investigate how this patient-specific configuration can be estimated from system 
perturbations, such as TKI dose reduction scenarios prior to treatment cessation. Our predictions 
closely resemble recent clinical findings substantiating our conclusion that treatment response 
during TKI dose reduction is indeed informative to predict a patient’s future outcome after stopping 
therapy (40). 
 
Methods 
Patient selection  
We analyzed time courses of 60 TKI-treated CML patients, for whom TKI-therapy had been 
stopped as a clinical intervention. Informed written consent was obtained from each subject 
according to the local regulations of the participating centers. Corresponding clinical trials were 
conducted in accordance with the Declaration of Helsinki and applicable regulatory requirements. 
The protocols were approved by the institutional review board or ethics committee of each 
participating center. Detailed information on the patient cohort is available in the Supplement 
Materials. For all 60 patients, serial BCR-ABL1/ABL1 measurements before as well as after 
cessation are available. For the purpose of this analysis, the date of a molecular recurrence after 
cessation was defined as the first detected BCR-ABL1/ABL1-ratio above 0.1%, indicating a loss of 
MR3, or the re-initiation of TKI treatment, whatever was reported first. 
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Furthermore, we selected patients, which received TKI monotherapy before stopping, which have 
been monitored at a sufficient number of time points to estimate the initial and secondary slopes 
and which present with the typical bi-exponential response dynamic (Figure 1A, Supplementary 
Material). The 21 selected patients, fulfilling those criteria, were compared with the full patient 
cohort (n=60) and showed no obvious differences for the initial BCR-ABL1 levels, treatment 
duration, recurrence behavior, follow up duration, recurrence times and used TKI, and are, 
therefore, considered to be representative examples (Figure S1). Moreover, the overall recurrence 
behavior of the selected patient cohort is comparable to larger clinical studies (11,14). 
 
Mathematical model of TKI-treated CML 
For our analysis, we apply an ODE model, which we proposed earlier in a methodological article 
qualitatively comparing a set of CML models with different functional interaction terms between 
leukemic cells and immune cells (39).  

This model is sketched in Figure 1B and formally described by: 

𝑑𝑋
𝑑𝑡

= 𝑝𝑌𝑋 ∗ 𝑌 − 𝑝𝑋𝑌 ∗ 𝑋 (1) 

𝑑𝑌
𝑑𝑡

= 𝑝𝑋𝑌 ∗ 𝑋 − 𝑝𝑌𝑋 ∗ 𝑌 + 𝑝 1 −
𝑌

𝐾𝑌
∗ 𝑌 − 𝑚 ∗ 𝑍 ∗ 𝑌 − 𝑇𝐾𝐼 ∗ 𝑌 (2) 

𝑑𝑍
𝑑𝑡

= 𝑟 + 𝑍 ∗ 𝑝 ∗
𝑌

𝐾 2 + 𝑌2 − 𝑎 ∗ 𝑍 (3) 

 

The model distinguishes between a population of quiescent leukemic cells (𝑋) and a population of 
actively cycling leukemic cells (𝑌), which proliferate with the rate 𝑝𝑌, whereas the growth is limited 
by a carrying capacity 𝐾 . Leukemic cells can switch reversibly between the active and the 
quiescent state with transition rates 𝑝𝑋𝑌 and 𝑝𝑌𝑋. Apoptosis is negligible for the quiescent 
population 𝑋 and can be efficiently integrated in the proliferation term for the activated cells 𝑌. TKI 
treatment is modelled by a kill rate 𝑇𝐾𝐼, which acts on proliferating cells 𝑌, but does not affect 
quiescent cells 𝑋. Furthermore, we do not explicitly include resistance occurrence in the current 
model as it does not present a major challenge in CML treatment. A complete eradication of 
leukemic cells is defined as a decrease of leukemic cells in 𝑋 and 𝑌 below the threshold of one 
cell. The corresponding BCR-ABL1/ABL1 ratio in the peripheral blood are calculated as the ratio of 
proliferating leukemic cells to the carrying capacity 𝐾𝑌 (see Supplementary Material for details).  
Furthermore, the model integrates a population of CML-specific immune effector cells (𝑍), which 
are generated at a constant, low production rate 𝑟  and undergo apoptosis with rate 𝑎. They 
eliminate proliferating leukemic cells 𝑌 with the kill rate 𝑚. The leukemia-dependent recruitment of 
immune cells follows a nonlinear functional response where 𝑝𝑍 and 𝐾𝑍 are positive constants. This 
functional response leads to an optimal immune cell recruitment for intermediate leukemic cell 
levels, i.e.: for low numbers of proliferating leukemic cells (𝑌 < 𝐾𝑍), the immune cell recruitment 
increases and the immune cells 𝑍 are stimulated to replicate in presence of proliferating leukemic 
cells 𝑌, reaching a maximum 𝑝𝑍/(2𝐾𝑍) when 𝑌 = 𝐾𝑍. For higher leukemic cell numbers (𝑌 > 𝐾𝑍) 
the immune cell recruitment decreases with 𝑌, reflecting the assumption that the proliferation of 
immune cells is decreased for high levels of proliferating leukemic cells 𝑌. This assumption follows 
recent findings, suggesting that a high load of CML cells inhibits the immune effector cells’ function 
and number (41). As a result, we obtain an immune window for which the recruitment exceeds the 
degradation rate 𝑎 of the immune cells and leads to an optimal immune response (see 
Supplementary Material).  
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For all patients, we use fixed, universal values for the immune mediated killing rate 𝑚, the 
proliferation rate 𝑝𝑌, the carrying capacity 𝐾𝑌, the immune cells natural influx 𝑟  and the immune 
cells apoptosis rate 𝑎. In contrast, the transition rates 𝑝𝑋𝑌 and 𝑝𝑌𝑋, the TKI kill rate 𝑇𝐾𝐼 and the 
immune parameters 𝐾  and 𝑝  are considered patient-specific parameters and are estimated with 
different strategies (see Supplementary Material). 
 
 
Results 
Individual BCR-ABL1 dynamics after TKI stop can be explained by a patient-specific 
immune component 
Comparing the BCR-ABL1 kinetics of the 21 TKI-treated CML patients before treatment cessation, 
we detected no obvious differences between the recurring and non-recurring patient groups, i.e., 
we found no markers in the patient data which could potentially serve as a predictive measure to 
prospectively identify patients that show a treatment-free remission after treatment cessation (see 
Supplementary Material and Figure S2/3). Motivated by these results, we developed an ODE 
model of CML treatment to investigate which part of a patient’s individual therapy response confers 
the relevant information to reliably distinguish recurrence from non-recurrence patients. To do so, 
we investigated which level of model complexity and what type of patient data are necessary as 
inputs to obtain model fits that sufficiently represent the available BCR-ABL1 data before and after 
treatment stop and that would allow to anticipate the response dynamics to TKI cessation. The 
models and input data used in each fitting strategy are presented below, with an increasing level of 
complexity. 
 
As a reference model, we use a reduced version of the suggested ODE model without an 
immunological component, i.e. all immunological parameters values are set to zero (Figure 1B; see 
Methods, 𝑝𝑍 = 𝐾𝑍 = 𝑎 =  𝑟𝑍 = 𝑚 = 0). This model predicts a complete eradication of residual 
disease levels only for very long treatment times. Thus, treatment cessation at any earlier time 
point will eventually lead to recurrence. Adapting this model to each available, individual patient 
time course by estimating the patient-specific model parameters 𝑝𝑋𝑌, 𝑝𝑌𝑋 and 𝑇𝐾𝐼 from the pre-
cessation BCR-ABL1 data, we confirm that relapse is predicted for all patients (Figure 2A, example 
time courses in Figures 2B,C), which is in contrast to the clinical observations. In summary, the 
reference model without immune system is not suitable to describe the non-recurrence cases and 
thereby opposes clinical findings on TFR (11–14). 
 
Clinical studies suggest that immunological components can potentially control minimal residual 
disease levels and, therefore, might prevent (molecular) recurrences after TKI stop (20,21). 
Therefore, we use the ODE model (Methods, equations 1-3) that explicitly considers an immune 
component (39). Because measurements of individual anti-leukemic immune conditions are not 
available, we investigate three different approaches (fitting strategy I to III) for estimating the 
relevant immune parameters 𝐾  and 𝑝  and compare the corresponding simulation results with the 
clinical data.  
 
In fitting strategy I, we consider a generic immune system configuration with identical immune 
parameters 𝐾  and 𝑝  for all patients. The remaining parameters 𝑝𝑋𝑌, 𝑝𝑌𝑋 and 𝑇𝐾𝐼 are estimated 
by individually fitting the model to the pre-cessation BCR-ABL1 time courses. A grid-based search 
in the (𝐾 , 𝑝 ) space of immune parameters only identifies configurations in which the overall rates 
and timings of recurrence are not sufficiently met (Figure 2D). Furthermore, the model predictions 
fail on the individual level, as neither the time courses nor the recurrence behavior could be 
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predicted reliably (Figure 2D inset). These findings as well as the recognition of immunological 
differences between different patients argues in favor of patient-specific immune parameters.  
 
In fitting strategy II, besides parameters 𝑝𝑋𝑌, 𝑝𝑌𝑋 and 𝑇𝐾𝐼, we also estimate patient-specific values 
for immune parameter 𝐾  and 𝑝 ; however we only apply the fitting routine to the pre-cessation 
BCR-ABL1 time courses. We observe no statistically significant difference between recurring and 
non-recurring patients with respect to the fitted immune parameter values (Figure S4).  
Furthermore,  the optimal fits fail to correctly predict the outcomes for individual patients (Figure 
2E). This indicates that the configuration of the immune response is most likely not imprinted in the 
patient response under TKI treatment, in which the drug mediated leukemia reduction is the 
dominating process. 
 
In fitting strategy III, we provide pre- and post-cessation data to fit patient specific model 
parameters 𝑝𝑋𝑌, 𝑝𝑌𝑋, 𝑇𝐾𝐼, 𝐾  and 𝑝 . We demonstrate that a patient-specific immune configuration 
is sufficient to consistently explain the clinical data (example time courses in Figure 2B,C, complete 
data in Figure S5 and Table S1), and that it can be obtained from patient’s response after TKI 
stopping. The model correctly describes the behavior on the population level (Figure 2F), as well 
as on the individual patients (Figure 2F inset).  
 
Having a univariate look at the individually estimated parameters of the immune model using fitting 
strategy III (Figure 3 A-E), we observed only minor differences between the recurring and the non-
recurring patients, that do not allow to clearly distinguish the patient groups. However, a bivariate 
analysis of the immune parameters 𝐾  and 𝑝  reveals a distinction between recurrence and non-
recurrence cases (Figure 3F). In particular, a lower value for the location of the immune window 𝐾  
together with a higher proliferation of the immune cells 𝑝  convey a favorable outcome after 
therapy stop. This pattern is also confirmed at the level of individual patients in which we studied 
the predicted outcome for optimal fits with systematically varying immune parameters (Figure 3G 
and S6). This analysis reveals distinct parameter regions for which either remission or recurrence 
is predicted, although the precise location of those regions further depends on all model 
parameters.  
 
From these results, we conclude that an individual immunological component (or another TKI-
independent anti-leukemic effect) is necessary to quantitatively explain the individual BCR-ABL1 
time courses of CML patients before and after stopping the TKI treatment. Our results also suggest 
that the correct estimation of the parameters describing such immunological component for each 
patient is not possible based on the BCR-ABL1 dynamics under constant TKI treatment alone and 
cannot be used for the prospective prediction of the molecular recurrence after TKI stop. 
 
Individual recurrence classification based on an “immunological landscape” 
Dynamical models, as the one suggested here for the interaction between leukemic and 
immunological cells (Figure 4A), are characterized by steady states which describe configurations 
in which the model quantities (in our case, cell populations) have reached an equilibrium. Stable 
steady states and their basins of attractions are conveniently depicted in a state space 
representation, which mimics a physical landscape (42) (Figure 4B). Typical steady states in our 
model refer to a fully developed leukemia (“disease steady state”, 𝑌 ≈ 𝐾𝑍) or an immunological 
control of residual leukemic levels (“remission steady state”,  𝑌 ≪ 𝐾𝑍), while trajectories represent 
dynamical changes of the system state along time. The existence and the precise location of the 
steady states and their basins of attraction depend on the particular leukemic and immunological 
model parameters and thereby determines the range of possible steady states that can be 
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achieved after treatment cessation (Figure 4C). As these parameters, obtained from fitting strategy 
III, differ between individual patients, they also describe “patient-specific immunological 
landscapes”.  
A detailed mathematical analysis suggests that the available patients can be grouped in three 
general classes which correspond to structurally different underlying landscapes of the ODE 
model: 
 

x Class A: For certain parameter configurations, the immunological landscape has only one 
stable steady state, namely the recurrence steady state 𝐸 . This means that the patient will 
always present with recurring disease after treatment cessation in this model due to an 
insufficient immune response, if CML is not completely eradicated, irrespective of the 
degree of tumor load reduction. The corresponding immunological landscape is visualized 
in Figure 5A and depicts the recurrence behaviour depending on the number of immune 
cells and leukemic cells at treatment cessation. According to our estimates, 6 out of 21 
patients fall into class A and ultimately present with recurring disease after treatment 
cessation (example in Figure 5B). 

x Class B: For other parameter configurations, the immunological landscape has two stable 
steady states: the disease steady state 𝐸  and the remission steady state 𝐸 . In this case 
there is a distinct remission level of BCR-ABL1 abundance, below which a strong immune 
system can further diminish the leukemia without TKI support. The corresponding 
immunological landscape is divided into these two basins of attraction and is visualized in 
Figure 5C. We estimate 8 out of 21 patients in this class, which all maintain TFR (example 
in Figure 5D). 

x Class C: The third class has the same stable steady states as class B, but in this case a 
small disturbance from the cure steady state 𝐸0 leads to the attraction basin of the 
recurrence steady state 𝐸  instead of the remission steady state 𝐸 . Only for a small range 
of CML abundance and a sufficiently high level of immune cells, the immune system is 
appropriately activated to keep the leukemia under sustained control. Figure 5E/F illustrates 
this control region as an isolated attractor basin. In the ideal case, the TKI therapy only 
reduces the leukemic load to a level that is sufficient to still activate the immune system to 
achieve this balance. However, if TKI treatment reduces tumor load to a very deep level, 
the CML cells regrow after therapy cessation as the immune response was also reduced 
too much. This represents a CML patient which may potentially achieve TFR but has a 
weak immune response. We estimate that seven out of 21 patients fall in this class, of 
which four have a recurrence and three remain in TFR (two examples in Figures 5G/H).  

 
For completeness, there is a fourth class, in which only a cure steady state exists. In this case, 
CML would not develop at all due to a strongly suppressive immune system. Naturally, those 
individuals do not appear in the patient cohort at all.  
 
Treatment optimization informed by the immunological configuration  
We showed that the immunological configuration of each patient determines which steady states 
can be reached using TKI treatment. It should be pointed out, that the resulting conclusion does 
not depend only on the model fits to the data, but also on the particular mechanisms assumed by 
the model structure. Within those restrictions it appears that patients in class A can only stop TKI 
treatment in the case that the disease is completely eradicated. This would require a median 
treatment time of 29 years in our simulations and was not achieved in any of the considered 
patients. However, even if treatment cessation is not an option for these patients, our previously 
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published results suggests that TKI dose reduction could be considered as a long-term treatment 
alternative (9). 
 
From a perspective of treatment optimization, patients in classes B and C are most interesting as 
they present an immune window, in which a TKI-based reduction of the leukemic cells can 
sufficiently stimulate the expansion of the immune cell population (Figure S7, Supplementary 
Material). Our model suggests that patients in class B are characterized by an immunological 
response that is sufficient to control the leukemia once the leukemic load has initially been reduced 
below a certain threshold. This remission allows for an activation of the immune system to further 
control the leukemia eradication even in the absence of TKI treatment. It is essential that the initial 
remission and the immunological activation surpass a certain threshold, which is indicated by the 
line separating the different basins of attraction in Figures 4B and 5C (separatrix). Clinically, this 
can be achieved by a sufficiently long TKI therapy, although we predict that this necessary time 
span was already reached much earlier for the respective six patients, in comparison with their 
actual treatment times (Table S2). 
 
In contrast to class B, the model analysis implies that patients in class C can also present with 
recurrence if a long TKI treatment is applied. Only in a narrow region of CML abundance the 
immune system is sufficiently stimulated: if leukemic load is too high, the immunological 
component is still suppressed, while for too low levels the stimulation is not strong enough. In this 
respect, TFR can only be achieved if treatment keeps the patient within his individualized immune 
window for a sufficient time thereby supporting the adequate proliferation of immune cells, such 
that the patient reaches the basin of attraction of the remission steady state 𝐸  (Figures 6A/B). If 
the treatment intensity is too high or the treatment duration is too long, this might lead to an 
“overtreatment” where the inherent immunological defense is not quickly and sufficiently activated 
to control a recurrence once TKI is stopped (Figures 6C-H). We show with a hypothetical treatment 
protocol that an adjustment of the necessary balance between leukemia abundance and 
immunological activation can be achieved within this model by detailed assessment of both cell 
populations and a narrowly adapted TKI administration (Figures S8/9).  
 
TKI dose alteration informs molecular recurrence after treatment cessation 
Detailed information about a patient’s response to TKI treatment cessation (according to fitting 
strategy III) can only be obtained if the complete data (including post-cessation measurements) is 
available. Thus, this approach can obviously not serve as a prediction strategy before therapy stop. 
However, we show in the following that response to dose reduction – prior to therapy stop – will 
also provide information to identify the patient specific immunological landscape and is, therefore, 
likely to provide important information about the disease dynamics after treatment cessation. Both, 
clinical and modeling evidence support the strategy to use information from intermediate dose 
reduction as this appears as a safe treatment option for almost all well responding CML patients 
(9,43).  

Specifically, individual fits for all patients according to the immune model and fitting strategy III 
allow to mathematically simulate how the patients would have responded if they were treated with 
a reduced TKI dose instead of stopping TKI completely. We use these model simulations to derive 
information about the predicted BCR-ABL1 ratio during a 50% dose reduction within a 12-month 
period. Figure 7A/B illustrates two typical time courses.  

Quantitatively, we estimate the linear slopes of the individual BCR-ABL1/ABL1 response during 
dose reduction and correlate it to the final remission status after treatment cessation (Figure 7C). A 
logistic regression analysis reveals that a 0.01 increase in the estimated slope increases the 
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chance of recurrence by 21% (OR: 1.21, 95% CI: 1.07–1.51), thereby indicating that recurring 
patients are predicted to present with higher (positive) slopes of the BCR-ABL1 ratio during the 
dose reduction period. Moreover, complementing this plot with the association of each patient with 
its predicted particular response class A, B, or C, we observe that class A patients have higher 
positive slopes and always have a recurrence, while most of class B patients show constant BCR-
ABL1 levels, therefore, staying in TFR. Class C patients show both, constant or increasing BCR-
ABL1 levels. However, higher positive slopes are more often observed in recurring patients. We 
suggest that patients with pronounced increases in BCR-ABL1 levels after dose reduction should 
not stop TKI treatment as this increase points towards an insufficient immune control and conveys 
an increased risk for molecular recurrence. 

Our results are in qualitative and quantitative agreement with a recent reanalysis of clinical data 
from the DESTINY trial (NCT01804985)(43,44) which differs from other TKI stop studies as in this 
trial the TKI treatment is reduced to 50% of the standard dose for 12 months prior to cessation. 
Based on a dataset of 171 patients we could demonstrate that the patient-individual slope of BCR-
ABL1/ABL1 ratios monitored during TKI dose reduction strongly correlates with the risk of 
individual recurrence after TKI stop (OR: 1.28; 95% CI: 1.17-1.42) and can serve as a promising 
indicator for high risk patients (40). Although time courses prior to dose reduction are not available 
from this study and preclude fitting of the complete ODE model, the overall conclusion of both, the 
presented conceptual approach and a paralleling data analysis, suggest that dose alterations are a 
valid means to probe the immunological configuration of leukemic remission. 

 
Discussion 
Here we present an ODE model for CML treatment that explicitly includes an immunological 
component and apply it to describe the therapy response and recurrence behavior of a cohort of 21 
CML patients with detailed BCR-ABL1 follow-up over their whole patient history. We demonstrate 
that an anti-leukemic immunological mechanism is necessary to account for a TKI-independent 
disease control, which prevents molecular recurrence emerging from residual leukemic cell levels 
after TKI cessation. Without such a mechanism, a long-term TFR can only be achieved if a 
complete eradication of leukemic cells is assumed. However, the presence of detectable MRD 
levels in many patients after therapy cessation (14) is not consistent with this assumption, which 
strongly suggests an additional control instance, which others (20,21,45,46) and we (39) interpret 
as a set of immunological factors. Including these aspects into our modeling approach, the 
available clinical data can be sufficiently described on the level of individual patients.  
 
Based on our simulation results we classify patients into three different groups regarding their 
predicted immune system configuration (“immunological landscape”): insufficient immune response 
(class A), strong immune response (class B) and weak immune response (class C). Class A 
patients are not able to control residual leukemic cells and would always present with CML 
recurrence as long as the disease is not completely eradicated. Consistent with the results of Horn 
et al. (47), this is only accomplished on very long timescales in our simulations and would, 
therefore, result in a lifelong therapy for most affected patients. However, as we suggested earlier, 
those patients might be eligible for substantial TKI dose reductions during long-term maintenance 
therapy (9). In contrast, class B patients are predicted to have a strong immune response and to 
control the leukemia once the leukemic load has been reduced below a certain threshold and thus, 
are predicted to require only a minimal treatment time (less than 5 years for the studied patients, 
see Table S2) to achieve TFR. For class C patients with a weak immune response, our model 
predicts that TFR achievement depends on an optimal balance between leukemia abundance and 
immunological activation before treatment cessation and could be accomplished by a narrowly 
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adapted TKI administration. These results are in line with those from a recent modeling study 
which suggested the existence a ‘Goldilocks Window’ in which treatment is required to optimize the 
balance between maximal tumor reduction and preservation of patient immune function (26). 
We also show that the information required to classify the patients according to their immune 
response and to predict their recurrence behavior cannot be obtained from BCR-ABL1 
measurements before treatment cessation only. A different fitting strategy (III) assessing also BCR-
ABL1 measurements after treatment cessation shows that the BCR-ABL1 changes resulting from 
this system perturbation (i.e. TKI stop) yields the necessary information. Interestingly, our 
simulation results demonstrate that also a less drastic system perturbation, i.e. a TKI dose 
reduction, can provide similar information and can be used to predict the individual outcome after 
treatment cessation. The feasibility of such an approach has been complemented by a recent 
reanalysis of the DESTINY trial (NCT01804985), which evaluated a beneficial effect of a 12 
months dose reduction treatment prior to TKI stop. We could confirm based on the clinical data of 
171 patients that the patient’s response dynamic during TKI dose reduction is indeed predictive for 
the individual risk of CML recurrence after TKI stop (40,43). 
 
Direct measurements of the individual immune compartments and their activation states represent 
another road to better understand the configuration of the anti-leukemic immune response in CML 
patients. Several studies identified different immunological markers in CML patients that correlate 
with the probability of treatment-free remission after therapy cessation (20,21). Learning from the 
behavior of these populations under continuing TKI treatment and with lowered leukemic load 
could further contribute to identify a patient’s “immunological landscape” and be informative for the 
prediction of individual outcomes after treatment stopping. However, as it is not clear, which 
immunological subset provides the suggested observed anti-CML response (48,49), corresponding 
measurements are currently not feasible and strongly argue in favor of our indirect modeling 
approach suggesting to retrieve similar information from BCR-ABL1 dynamics after TKI dose 
reduction.  
 
Our analysis is based on a rather small cohort of patients. Although our results do not depend on 
the study size, we can derive the strongest conclusions with respect to illustrating the conceptual 
approach of inferring immune responses from treatment alterations and demonstrating its 
predictive power. Our results are further based on a set of simplifications and assumptions. As 
such, we do not consider resistance mutations as almost no such events have been reported 
during TKI cessation studies in CML and almost all patients respond well to re-initiation of TKI 
treatment with their previous drug (11). This might be different for other disease entities in which 
tumor evolution imposes serious challenges to long-term disease control. Focusing on a related 
aspect it has been shown that different immune cell types are associated with recurrence behavior 
of CML patients (20,21). However, for simplicity, we restricted our analysis to a unified anti-
leukemic immune compartment in the model and did not distinguish between different immune cell 
populations and interactions between them. Furthermore, the model is based on an interaction 
between leukemic and immune cells, in which the immune cell population is only activated for 
intermediate levels of leukemic burden, reflecting the assumption that immune cells are not 
efficiently activated for small numbers of leukemic cells and are additionally suppressed by high 
tumor load. Similar assumptions have been discussed recently (37) while we also illustrated the 
suitability of other mechanisms of interaction (39). 
 
In summary, our results support the notion of immunological mechanisms as an important factor to 
determine the success of TFR in CML patients. Importantly, we show that besides the direct 
measurement of the immune response, also system perturbations, such as a TKI dose reduction, 
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can (indirectly) provide information about the individual disease dynamics and, therefore, allow to 
predict the risk of CML recurrence for individual patients after TKI stop. Such results demonstrate 
the potential of mathematical models in providing insights on the mechanisms underlying cancer 
treatment as well in delineating different treatment strategies. Applications to other cancer entities, 
in which the endogenous immune system can support the control or even the eradication of 
residual tumor cells, are a natural continuation of this work and will become even more important 
with the availability of cancer immunotherapies that allow modulation of individual immune 
responses (50). 
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Figure 1: Strategy for patient selection and model sketch of TKI-treated CML 
(A) Flow diagram indicating the process of data selection. Patients were excluded with less than 5 
BCR-ABL1 measurements during TKI treatment, missing or extremely low initial measurements 
(i.e., first measurement is only available after more than 10 months or below MMR). Furthermore, 
we only included patients with a biexponential decline in which the initial slope was steeper than 
the second slope. We also selected patients that were under continuous therapy with one TKI, 
thereby excluding patients with a pre-treatment, TKI-change during, combination therapy and 
missing therapy/cessation information. (B) General scheme of the ODE model setup indicating the 
relevant cell populations and their mutual interactions (arrows with rate constants) that govern their 
dynamical responses. Leukemic cells can reversibly switch between the quiescent (𝑋) and 
proliferating (𝑌) state with corresponding transition rates 𝑝𝑋𝑌 and 𝑝𝑌𝑋. Proliferating cells divide with 
rate 𝑝 1 − 𝑌

𝐾
. The TKI treatment has a cytotoxic effect 𝑇𝐾𝐼 on proliferating cells (thunder 

symbol) while quiescent cells are not affected. Immune cells in 𝑍 have a cytotoxic effect (with rate 
𝑚) on proliferating leukemic cells in 𝑌. The proliferation of immune cells is stimulated in the 
presence of proliferating leukemic cells by an immune recruitment rate 𝑝 ∗ 𝑌

𝐾 +𝑌
. This nonlinear 

term describes an immune window, where the immune response is suppressed for high leukemic 
cell levels above the constant 𝐾 . Moreover, immune cells are generated by a constant production 
𝑟  and undergo apoptosis with rate 𝑎 (see Methods). 
 

Figure 2: Model comparison using different fitting strategies. 
(A,D,E,F): Kaplan-Meier estimators comparing the cumulative recurrence rates of four different 
fitting strategies (grey) with the clinical data (black): (A) the reduced model without an immune 
component, and three different configurations of the immune model ((D): generic immune system 
configuration (fitting strategy I), (E): individual immune system configuration estimated by fitting 
pre-cessation data of the BCR-ABL/ABL1 time courses (fitting strategy II); (F): individual immune 
system configuration estimated by fitting the complete BCR-ABL/ABL1 time courses (fitting 
strategy III)). The insets show the rate of true positive (tp) and true negative (tn) predictions of the 
model. (B, C): Examples of clinical data for a representative recurring (B) and a non-recurring (C) 
patient with corresponding model predictions for the reduced model without an immune component 
(black) and the full model using an individual immune system configuration estimated by fitting 
complete BCR-ABL/ABL1 time courses (fitting strategy III - grey). BCR-ABL/ABL1 measurements 
are shown as black dots. Black triangles indicate the lower quantification limit for undetectable 
BCR-ABL1 levels (see Supplementary Material). The grey area indicates the time period after 
treatment cessation. 
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Figure 3: Comparison of estimated immune model parameters for recurring and non-
recurring patients. 
(A-E) Violin plots of the best fit values for model parameters 𝑝 , 𝐾 , 𝑝𝑋𝑌, 𝑝𝑌𝑋 and 𝑇𝐾𝐼 obtained by 
using fitting strategy III, shown separately for the groups of recurring (dark grey) and non-recurring 
(light grey) patients. The individual parameter values are shown as short horizontal black (recurring 
patients) and white tick marks (non-recurring patients). The horizontal black lines indicate the 
median value of each group while the dashed grey line depicts the mean value of the complete 
cohort, P-values are based on a Kolmogorov-Smirnov tests to compare the distribution of the 
estimated parameters. (F): Scatter plot for the best fitting immune parameter 𝑝  vs. 𝐾  obtained for 
each patient (fitting strategy III) from the recurrence (dark grey) and non-recurrence group (light 
grey). (G) Predicted recurrence behavior (recurrence - dark grey; non-recurrence - light grey) for 
an individual patient depending on the values of the immune parameters (𝑝 , 𝐾 ) which are varied 
within a predefined grid. The remaining free parameters (𝑝𝑋𝑌, 𝑝𝑌𝑋, 𝑇𝐾𝐼) were optimized according 
to fitting strategy III. Only parameter estimations resulting in sufficiently good fits (i.e. with a 
residual sum of squares (RSS) less than twice the RSS of the best fit) are shown. Figure S6 
provides the corresponding plots for all 21 patients. 
 

Figure 4: Conceptual approach to obtain immunological landscapes.  
(A) A set of optimal, patient specific model parameters is obtained by fitting the ODE model to the 
pre- and post-cessation BCR-ABL1 time courses of each patient (black lines indicating the optimal 
model fit to the data). (B) Based on the obtained parameters, a phase portrait of system (equations 
1-3) can be reconstructed, in which the abundance of leukemic (in terms of BCR-ABL/ABL1 ratio) 
and immune cells are shown on the respective axes. For the situation of no TKI treatment (TKI=0), 
several stable steady states can be identified to which the system would converge in the long run. 
Typically, the disease steady state 𝐸  is characterized by a high number of leukemic cells and few 
immune cells while in the remission steady state 𝐸  an increased number of immune cells exerts 
control of a residual leukemic disease. Each stable steady state has a basin of attraction, which is 
the set of all points that approach the stable point as time passes. A completely eradication of 
leukemic cells constitutes the cure steady state 𝐸0, which is intrinsically unstable and does not 
have a basin of attraction. At diagnosis, the system state is near the disease steady state and will 
remain there unless the TKI treatment drives the system away from this basin of attraction (green 
trajectory, lowering the abundance of leukemic cells). The outcome after treatment cessation 
depends on whether the trajectory has crossed the separatrix (dashed line separating the different 
basins of attraction) or not (indicated by the orange or purple star, respectively). The system either 
returns to the disease steady state indicating recurrence (red trajectory) or approaches the 
remission steady state (blue trajectory), indicating sufficient immune activation and sustained 
disease control. The resulting “immunological landscape” is patient specific and the location of the 
separatrix may differ for different patients. This implies that the minimum level of leukemic cells to 
guarantee TFR differs between patients. (C) Given the particular model parameterization and the 
resulting immunological landscape for each patient, it is now possible to simulate different 
treatment scenarios for that particular patient including different cessation times (indicated by the 
orange or purple star). 
  



19 
 

Figure 5: Immunological landscapes for typical clinical scenarios and corresponding time 
courses. 
 (A,C,E,G) Examples of patient specific landscapes are shown on the left side (compare Figure 4). 
The disease and remission state are represented by solid circles (●). The y-axis (BCR-ABL/ABL) is 
set to a nonlinear scale via a root transformation. The black solid line describe trajectories under 
TKI treatment, while the grey line describes the time course after treatment cessation. (B,D,F,H) 
Corresponding clinical data (dots and triangles, compare Figure 2B,C)  and optimal simulation 
results (black line – predicted BCR-ABL/ABL1 ratio, grey line – predicted number of immune cells) 
are shown on the right side (compare Figure 2B,C). Horizontal dashed lines indicate the immune 
window if it exists (c.f. Methods, Supplementary Material). (A,B) For patients in class A (insufficient 
immune response), only the disease steady state 𝐸  is available, and all trajectories lead to 
recurrence after treatment cessation. (C,D) Class B patients (strong immune response) present 
with the disease steady state 𝐸  and remission steady state 𝐸 . The separatrix between their 
basins of attraction is represented by a dashed line. After treatment cessation, the patients stays in 
TFR. (E-H) Patients of class C (weak immune response) present with an isolated basin of 
attraction for the remission steady state 𝐸  which is more difficult to reach. The example in (E,G) 
maintains TFR after TKI cessation while the lower example in (F,H) presents with recurrence. 

Figure 6: Predicted recurrence behavior of patients with weak immune response (class C). 
Typical immunological landscapes, as they can occur for patients with a weak immune response 
(class C), are complemented with corresponding simulation time courses for BCR-ABL/ABL1 ratio 
and immune cell number for different simulated treatment times (c.f. Figure 5). (A,B) TKI treatment 
“drives” the system within the isolated basin of the remission steady state 𝐸 , and the simulated 
patient achieves TFR. (C,D) Using the same parameterization as in (A,B) but a longer treatment 
time makes the trajectory leave the basin of attraction for the remission steady state. This leads to 
a considerable decrease in the recruitment of immune cells and results in recurrence after TKI 
cessation. (E,F,G,H) For another parameterization of the ODE model, the treatment trajectory 
would never reach the basin of the remission steady state, independent of the applied treatment 
time (35 months in E,F; 70 months in G,H), and ultimately lead to disease recurrence.  
 
Figure 7: Simulation of individual responses to TKI dose reduction and association with the 
final remission state  
(A,B) Representative time courses illustrate simulated patient responses (in terms of BCR-
ABL/ABL1 ratios (black line) and number of immune cells (grey line), compare Figure 5) under the 
assumption that the TKI dose is reduced to 50% of the initial dose during a 12 month dose 
reduction period (grey background). From these simulations, the linear slope of the log(BCR-
ABL/ABL) ratio during the dose reduction period (dashed white line, the inset shows an enlarged 
view of the dose reduction period) is obtained using a linear regression model.  
(C) Logistic regression analysis for the remission status of all 21 patients after treatment cessation 
(either recurring or non-recurring; class indicated by symbol: class A: circle, class B: square, class 
C: rhombus, overlapping points are stacked horizontally (*)) versus their simulated log(BCR-
ABL/ABL) slope during the 12 month dose reduction period. The solid line indicates the estimated 
chance that a patient presenting with the particular slope during dose reduction will show disease 
recurrence after finally stopping TKI treatment. The corresponding OR = 1.21 (95% CI: 1.07–1.51) 
indicates that the chance for disease recurrence after TKI stop increases by 21% for each 0.01 
increase in the log10(BCR-ABL/ABL) slope during dose reduction.  
 
















