276 research outputs found

    Holistic corpus-based dialectology

    Get PDF
    This paper is concerned with sketching future directions for corpus-based dialectology. We advocate a holistic approach to the study of geographically conditioned linguistic variability, and we present a suitable methodology, 'corpusbased dialectometry', in exactly this spirit. Specifically, we argue that in order to live up to the potential of the corpus-based method, practitioners need to (i) abandon their exclusive focus on individual linguistic features in favor of the study of feature aggregates, (ii) draw on computationally advanced multivariate analysis techniques (such as multidimensional scaling, cluster analysis, and principal component analysis), and (iii) aid interpretation of empirical results by marshalling state-of-the-art data visualization techniques. To exemplify this line of analysis, we present a case study which explores joint frequency variability of 57 morphosyntax features in 34 dialects all over Great Britain

    What is Normal, What is Strange, and What is Missing in a Knowledge Graph: Unified Characterization via Inductive Summarization

    Full text link
    Knowledge graphs (KGs) store highly heterogeneous information about the world in the structure of a graph, and are useful for tasks such as question answering and reasoning. However, they often contain errors and are missing information. Vibrant research in KG refinement has worked to resolve these issues, tailoring techniques to either detect specific types of errors or complete a KG. In this work, we introduce a unified solution to KG characterization by formulating the problem as unsupervised KG summarization with a set of inductive, soft rules, which describe what is normal in a KG, and thus can be used to identify what is abnormal, whether it be strange or missing. Unlike first-order logic rules, our rules are labeled, rooted graphs, i.e., patterns that describe the expected neighborhood around a (seen or unseen) node, based on its type, and information in the KG. Stepping away from the traditional support/confidence-based rule mining techniques, we propose KGist, Knowledge Graph Inductive SummarizaTion, which learns a summary of inductive rules that best compress the KG according to the Minimum Description Length principle---a formulation that we are the first to use in the context of KG rule mining. We apply our rules to three large KGs (NELL, DBpedia, and Yago), and tasks such as compression, various types of error detection, and identification of incomplete information. We show that KGist outperforms task-specific, supervised and unsupervised baselines in error detection and incompleteness identification, (identifying the location of up to 93% of missing entities---over 10% more than baselines), while also being efficient for large knowledge graphs.Comment: 10 pages, plus 2 pages of references. 5 figures. Accepted at The Web Conference 202

    Metabolite essentiality elucidates robustness of Escherichia coli metabolism

    Full text link
    Complex biological systems are very robust to genetic and environmental changes at all levels of organization. Many biological functions of Escherichia coli metabolism can be sustained against single-gene or even multiple-gene mutations by using redundant or alternative pathways. Thus, only a limited number of genes have been identified to be lethal to the cell. In this regard, the reaction-centric gene deletion study has a limitation in understanding the metabolic robustness. Here, we report the use of flux-sum, which is the summation of all incoming or outgoing fluxes around a particular metabolite under pseudo-steady state conditions, as a good conserved property for elucidating such robustness of E. coli from the metabolite point of view. The functional behavior, as well as the structural and evolutionary properties of metabolites essential to the cell survival, was investigated by means of a constraints-based flux analysis under perturbed conditions. The essential metabolites are capable of maintaining a steady flux-sum even against severe perturbation by actively redistributing the relevant fluxes. Disrupting the flux-sum maintenance was found to suppress cell growth. This approach of analyzing metabolite essentiality provides insight into cellular robustness and concomitant fragility, which can be used for several applications, including the development of new drugs for treating pathogens.Comment: Supplements available at http://stat.kaist.ac.kr/publication/2007/PJKim_pnas_supplement.pd

    Molecular cloning of a human homologue of Drosophila heterochromatin protein HP1 using anti-centromere autoantibodies with anti-chromo specificity

    Get PDF
    We have identified a novel autoantibody specificity in scleroderma that we term anti-chromo. These antibodies recognize several chromosomal antigens with apparent molecular mass of between 23 and 25 kDa, as determined by immunoblots. Anti-chromo autoantibodies occur in 10-15% of sera from patients with anti-centromere antibodies (ACA). We used anti-chromo antibodies to screen a human expression library and obtained cDNA clones encoding a 25 kDa chromosomal autoantigen. DNA sequence analysis reveals this protein to be a human homologue of HP1, a heterochromatin protein of Drosophila melanogaster. We designate our cloned protein HP1Hs alpha. Epitope mapping experiments using both human and Drosophila HP1 reveal that anti-chromo antibodies target a region at the amino terminus of the protein. This region contains a conserved motif, the chromo domain (or HP1/Pc box), first recognized by comparison of Drosophila HP1 with the Polycomb gene product. Both proteins are thought to play a role in creating chromatin structures in which gene expression is suppressed. Anti-chromo thus defines a novel type of autoantibody that recognizes a conserved structural motif found on a number of chromosomal proteins

    Notes on the Music: A social data infrastructure for music annotation

    Get PDF
    Beside transmitting musical meaning from composer to reader, symbolic music notation affords the dynamic addition of layers of information by annotation. This allows music scores to serve as rudimentary communication frameworks. Music encodings bring these affordances into the digital realm; though annotations may be represented as digital pen-strokes upon a score image, they must be captured using machine-interpretable semantics to fully benefit from this transformation. This is challenging, as annota- tors’ requirements are heterogeneous, varying both across different types of user (e.g., musician, scholar) and within these groups, de- pending on the specific use-case. A hypothetical all-encompassing tool catering to every conceivable annotation type, even if it were possible to build, would vastly complicate user interaction. This additional complexity would significantly increase cognitive load and impair usability, particularly in dynamic real-time usage con- texts, e.g., live annotation during music rehearsal or performance. To address this challenge, we present a social data infrastructure that facilitates the creation of use-case specific annotation toolkits. Its components include a selectable-score module that supports customisable click-and-drag selection of score elements (e.g., notes, measures, directives); the Web Annotations data model, extended to support the creation of custom, Web-addressable annotation types supporting the specification and (re-)use of annotation palettes; and the Music Encoding and Linked Data (MELD) Javascript client library, used to build interfaces that map annotation types to render- ing and interaction handlers. We have extended MELD to support the Solid platform for social Linked Data, allowing annotations to be privately stored in user-controlled Personal Online Datastores (Pods), or selectively shared or published. To demonstrate the feasi- bility of our proposed approach, we present annotation interfaces employing the outlined infrastructure in three distinct use-cases: scholarly communication; music rehearsal; and rating during music listening

    Rate Effects on Timing, Key Velocity, and Finger Kinematics in Piano Performance

    Get PDF
    We examined the effect of rate on finger kinematics in goal-directed actions of pianists. In addition, we evaluated whether movement kinematics can be treated as an indicator of personal identity. Pianists' finger movements were recorded with a motion capture system while they performed melodies from memory at different rates. Pianists' peak finger heights above the keys preceding keystrokes increased as tempo increased, and were attained about one tone before keypress. These rate effects were not simply due to a strategy to increase key velocity (associated with tone intensity) of the corresponding keystroke. Greater finger heights may compensate via greater tactile feedback for a speed-accuracy tradeoff that underlies the tendency toward larger temporal variability at faster tempi. This would allow pianists to maintain high temporal accuracy when playing at fast rates. In addition, finger velocity and accelerations as pianists' fingers approached keys were sufficiently unique to allow pianists' identification with a neural-network classifier. Classification success was higher in pianists with more extensive musical training. Pianists' movement “signatures” may reflect unique goal-directed movement kinematic patterns, leading to individualistic sound

    Implementation and Characterization of Vibrotactile Interfaces

    Get PDF
    While a standard approach is more or less established for rendering basic vibratory cues in consumer electronics, the implementation of advanced vibrotactile feedback still requires designers and engineers to solve a number of technical issues. Several off-the-shelf vibration actuators are currently available, having different characteristics and limitations that should be considered in the design process. We suggest an iterative approach to design in which vibrotactile interfaces are validated by testing their accuracy in rendering vibratory cues and in measuring input gestures. Several examples of prototype interfaces yielding audio-haptic feedback are described, ranging from open-ended devices to musical interfaces, addressing their design and the characterization of their vibratory output
    corecore