214 research outputs found

    Doppler Probe of Accretion onto a T Tauri star

    Full text link
    The YY Ori stars are T Tauri stars with prominent time-variable redshifted absorption components that flank certain emission lines. One of the brightest in this class is S CrA, a visual double star. We have obtained a series of high-resolution spectra of the two components during four nights with the UVES spectrograph at the Very Large Telescope. We followed the spectral changes occurring in S CrA to derive the physical structure of the accreting gas. We found that both stars are very similar with regard to surface temperature, radius, and mass. Variable redshifted absorption components are particularly prominent in the SE component. During one night, this star developed a spectrum unique among the T Tauri stars: extremely strong and broad redshifted absorption components appeared in many lines of neutral and ionized metals, in addition to those of hydrogen and helium. The absorption depths of cooler, low ionization lines peak at low velocities - while more highly ionized lines have peak absorption depths at high velocities. The different line profiles indicate that the temperature and density of the accretion stream increase as material approaches the star. We derive the physical conditions of the flow at several points along the accretion funnel directly from the spectrum of the infalling gas. We estimated mass accretion rates of about 10^(-7) solar masses per year, which is similar to that derived from the relation based on the strength of H alpha emission line. This is the first time the density and temperature distributions in accretion flows around a T Tauri star have been inferred from observations. Compared with predictions from standard models of accretion in T Tauri stars, which assume a dipole stellar magnetic field, we obtained higher densities and a steeper temperature rise toward the star.Comment: Replaces 1408.1846 4 pages, 4 figures. Appears in Astronomy and Astrophysics, 201

    Periodic variations in the colours of the classical T Tauri star RW Aur A

    Get PDF
    The classical T Tauri star RW Aur A is an irregular variable with a large amplitude in all photometric bands. In an extended series of photometric data we found small-amplitude periodic variations in the blue colours of the star, with a period of 2.64 days. The period was relatively stable over several years. The amplitude of the periodic signal is 0.21 mag in U-V, 0.07 mag in B-V, and about 0.02 mag in V-R and V-I. No periodicity was found in the V magnitude. The relevance of this photometric period to the recently discovered periodicity in spectral features of the star is discussed, and the hypothesis of a hot spot is critically considered.Comment: 5 pages, 8 figures, uses new aa.cls, accepted for publication in Astronomy and Astrophysic

    The Origins of Fluorescent H_2 Emission From T Tauri Stars

    Get PDF
    We survey fluorescent H_2 emission in HST STIS spectra of the classical T Tauri stars (CTTSs) TW Hya, DF Tau, RU Lupi, T Tau, and DG Tau, and the weak-lined T Tauri star (WTTS) V836 Tau. From each of those sources we detect between 41 and 209 narrow H_2 emission lines, most of which are pumped by strong Lyα emission. H_2 emission is not detected from the WTTS V410 Tau. The fluorescent H_2 emission appears to be common to circumstellar environments around all CTTSs, but high spectral and spatial resolution STIS observations reveal diverse phenomenon. Blueshifted H_2 emission detected from RU Lupi, T Tau, and DG Tau is consistent with an origin in an outflow. The H_2 emission from TW Hya, DF Tau, and V836 Tau is centered at the radial velocity of the star and is consistent with an origin in a warm disk surface. The H_2 lines from RU Lupi, DF Tau, and T Tau also have excess blueshifted H_2 emission that extends to as much as -100 km s^(-1). The strength of this blueshifted component from DF Tau and T Tau depends on the upper level of the transition. In all cases, the small aperture and attenuation of H_2 emission by stellar winds restricts the H_2 emission to be formed close to the star. In the observation of RU Lupi, the Lyα emission and the H_2 emission that is blueshifted by 15 km s^(-1) are extended to the SW by ~0".07, although the faster H_2 gas that extends to ~100 km s^(-1) is not spatially extended. We also find a small reservoir of H_2 emission from TW Hya and DF Tau consistent with an excitation temperature of ~2.5 × 10^4 K

    Unveiling extremely veiled T Tauri stars

    Get PDF
    Photospheric absorption lines in classical T Tauri stars (CTTS) are weak compared to normal stars. This so-called veiling is normally identified with an excess continuous emission formed in shock-heated gas at the stellar surface below the accretion streams. We have selected four stars (RW Aur A, RU Lup, S CrA NW and S CrA SE) with unusually strong veiling to make a detailed investigation of veiling versus stellar brightness and emission line strengths for comparisons to standard accretion models. We have monitored the stars photometrically and spectroscopically at several epochs. In standard accretion models a variable accretion rate will lead to a variable excess emission. Consequently, the stellar brightness should vary accordingly. We find that the veiling of absorption lines in these stars is strongly variable and usually so large that it would require the release of several stellar luminosities of potential energy. At states of very large line dilution, the correspondingly large veiling factors derived correlate only weakly with brightness. Moreover, the emission line strengths violate the expected trend of veiling versus line strength. The veiling can change dramatically in one night, and is not correlated with the phase of the rotation periods found for two stars. We show that in at least three of the stars, when the veiling becomes high, the photospheric lines become filled-in by line emission, which produces large veiling factors unrelated to changes in any continuous emission from shocked regions. We also consider to what extent extinction by dust and electron scattering in the accretion stream may affect veiling measures in CTTS. We conclude that the degree of veiling cannot be used as a measure of accretion rates in CTTS with rich emission line spectra.Comment: Accepted for publication in A&A Letters. New language-edited version. (4 pages, 3 figures

    Disks around Hot Stars in the Trifid Nebula

    Get PDF
    We report on mid-IR observations of the central region in the Trifid nebula, carried out with ISOCAM in several broad-band infrared filters and in the low resolution spectroscopic mode provided by the circular variable filter. Analysis of the emission indicates the presence of a hot dust component (500 to 1000 K) and a warm dust component at lower temperatures (150-200 K) around several members of the cluster exciting the HII region, and other stars undetected at optical wavelengths. Complementary VLA observations suggest that the mid-IR emission could arise from a dust cocoon or a circumstellar disk, evaporated under the ionization of the central source and the exciting star of the nebula. In several sources the 9.7μm9.7\mu m silicate band is seen in emission. One young stellar source shows indications of crystalline silicates in the circumstellar dust.Comment: 4 pages with 1 figur

    On the origin of ionising photons emitted by T Tauri stars

    Full text link
    We address the issue of the production of Lyman continuum photons by T Tauri stars, in an attempt to provide constraints on theoretical models of disc photoionisation. By treating the accretion shock as a hotspot on the stellar surface we show that Lyman continuum photons are produced at a rate approximately three orders of magnitude lower than that produced by a corresponding black body, and that a strong Lyman continuum is only emitted for high mass accretion rates. When our models are extended to include a column of material accreting on to the hotspot we find that the accretion column is extremely optically thick to Lyman continuum photons. Further, we find that radiative recombination of hydrogen atoms within the column is not an efficient means of producing photons with energies greater than 13.6eV, and find that an accretion column of any conceivable height suppresses the emission of Lyman continuum photons to a level below or comparable to that expected from the stellar photosphere. The photospheric Lyman continuum is itself much too weak to affect disc evolution significantly, and we find that the Lyman continuum emitted by an accretion shock is similarly unable to influence disc evolution significantly. This result has important consequences for models which use photoionisation as a mechanism to drive the dispersal of circumstellar discs, essentially proving that an additional source of Lyman continuum photons must exist if disc photoionisation is to be significant.Comment: 6 pages, 4 figures. Accepted for publication in MNRA

    Modes of Multiple Star Formation

    Get PDF
    This paper argues that star forming environments should be classified into finer divisions than the traditional isolated and clustered modes. Using the observed set of galactic open clusters and theoretical considerations regarding cluster formation, we estimate the fraction of star formation that takes place within clusters. We find that less than 10% of the stellar population originates from star forming regions destined to become open clusters, confirming earlier estimates. The smallest clusters included in the observational surveys (having at least N=100 members) roughly coincide with the smallest stellar systems that are expected to evolve as clusters in a dynamical sense. We show that stellar systems with too few members N < N_\star have dynamical relaxation times that are shorter than their formation times (1-2 Myr), where the critical number of stars N_\star \approx 100. Our results suggest that star formation can be characterized by (at least) three principal modes: I. isolated singles and binaries, II. groups (N<N_\star), and III. clusters (N>N_\star). Many -- if not most -- stars form through the intermediate mode in stellar groups with 10<N<100. Such groups evolve and disperse much more rapidly than open clusters; groups also have a low probability of containing massive stars and are unaffected by supernovae and intense ultraviolet radiation fields. Because of their short lifetimes and small stellar membership, groups have relatively little effect on the star formation process (on average) compared to larger open clusters.Comment: accepted to The Astrophysical Journa

    Measuring the refractive index dispersion of (un)pigmented biological tissues by Jamin-Lebedeff interference microscopy

    Get PDF
    Jamin-Lebedeff interference microscopy is a powerful technique for measuring the refractive index of microscopically-sized solid objects. This method was classically used for transparent objects immersed in various refractive-index matching media by applying light of a certain predesigned wavelength. In previous studies, we demonstrated that the Jamin-Lebedeff microscopy approach can also be utilized to determine the refractive index of pigmented media for a wide range of wavelengths across the visible spectrum. The theoretical basis of the extended method was however only precise for a single wavelength, dependent on the characteristics of the microscope setup. Using Jones calculus, we here present a complete theory of Jamin-Lebedeff interference microscopy that incorporates the wavelength-dependent correction factors of the half- and quarter-wave plates. We show that the method can indeed be used universally in that it allows the assessment of the refractive index dispersion of both unpigmented and pigmented microscopic media. We illustrate this on the case of the red-pigmented wing of the damselfly Hetaerina americana and find that very similar refractive indices are obtained whether or not the wave-plate correction factors are accounted for. (C) 2019 Author(s)

    Non-axisymmetric accretion on the classical TTS RW Aur A

    Get PDF
    (Abridged) High-resolution spectroscopic monitoring of RW Aur A was carried out in 1996, 1998 and 1999 with simultaneous B, V photometry. A multicomponent spectrum is revealed with a veiled photospheric spectrum, broad emissions, narrow emission lines of helium, and accretion, wind and shell features. Periodic modulations in many spectral features were found. The photospheric absorption lines show sinusoidal variations in radial velocity with an amplitude of +-6 km/s and a period of about 2.77 days. The radial velocities of the narrow emission lines of He vary with the same period but in anti-phase to the photospheric lines. The equivalent widths of the narrow emissions vary with a phase-shift with respect to the velocity curve. The strength of the red-shifted accretion components of Na D and other lines is also modulated with the same period. The broad emission lines of metals vary mostly with the double period of about 5.5 days. One unexpected result is that no correlation was found between the veiling and the brightness, although both varied in wide ranges. This is partly due to a contribution of the shell absorption to the photospheric line profiles, which make them vary in width and depth thus simulating lower veiling. Most of the observed features can be interpreted in the framework of non-axisymmetric magnetospheric accretion. We consider two possible models. In the first the asymmetry is induced by orbital motion of an invisible, low mass secondary, which also influences the gasflows around the star, the second considers rotational modulation of a single star with an inclined or asymmetric magnetosphere
    corecore