552 research outputs found
Simple analytic solution of fireball hydrodynamics
A new family of simple analytic solutions of hydrodynamics is found for
non-relativistic, rotationally symmetric fireballs assuming an ideal gas
equation of state. The solution features linear flow profile and a non-trivial
transverse temperature profile. The radial temperature gradient vanishes only
in the collisionless gas limit. The Zimanyi-Bondorf-Garpman solution and the
Buda-Lund parameterization of expanding hydrodynamical sources are recovered as
special cases. The results are applied to predict new features of proton-proton
correlations and spectra data at 1.93 AGeV Ni + Ni reactions.Comment: Latex, Revte
Broad-band spectrophotometry of the hot Jupiter HAT-P-12b from the near-UV to the near-IR
The detection of trends or gradients in the transmission spectrum of
extrasolar planets is possible with observations at very low spectral
resolution. Transit measurements of sufficient accuracy using selected
broad-band filters allow for an initial characterization of the atmosphere of
the planet. We obtained time series photometry of 20 transit events and
analyzed them homogeneously, along with eight light curves obtained from the
literature. In total, the light curves span a range from 0.35 to 1.25 microns.
During two observing seasons over four months each, we monitored the host star
to constrain the potential influence of starspots on the derived transit
parameters. We rule out the presence of a Rayleigh slope extending over the
entire optical wavelength range, a flat spectrum is favored for HAT-P-12b with
respect to a cloud-free atmosphere model spectrum. A potential cause of such
gray absorption is the presence of a cloud layer at the probed latitudes.
Furthermore, in this work we refine the transit parameters, the ephemeris and
perform a TTV analysis in which we found no indication for an unseen companion.
The host star showed a mild non-periodic variability of up to 1%. However, no
stellar rotation period could be detected to high confidence.Comment: 13 pages, 6 figures, Accepted for publication in A&
A theoretical study of the stability of disulfide bridges in various β-sheet structures of protein segment models
Electron structure calculations are used to explore stabilization effects of disulfide bridges in a (Ala–Cys–Ala–Cys–Ala)2 β-sheet model both in the parallel and the anti-parallel (103142 and 143102) arrangements. Stabilities were calculated using a redox reaction involving a weak oxidizing agent (1,4-benzoquinone). The results show that both inter- and intra-strand disulfide SS-bridges stabilize the β-sheet backbone fold. However, inter-strand SS-bridges give more stability than their intra-strand counterparts. For both single and double disulfide linked conformations, stabilization was larger for the parallel than for the anti-parallel β-sheet arrangements
Time Dependence of Chemical Freeze-out in Relativistic Heavy Ion Collisions
We investigate chemical and thermal freeze-out time dependencies for strange
particle production for CERN SPS heavy ion collisions in the framework of a
dynamical hadronic transport code. We show that the Lambda yield changes
considerably after hadronization in the case of Pb+Pb collisions, whereas for
smaller system sizes (e.g. S+S) the direct particle production dominates over
production from inelastic rescattering. Chemical freeze-out times for strange
baryons in Pb+Pb are smaller than for non-strange baryons, but they are still
sufficiently long for hadronic rescattering to contribute significantly to the
final Lambda yield. Based on inelastic and elastic cross section estimates we
expect the trend of shorter freeze-out times (chemical and kinetic), and thus
less particle production after hadronization, to continue for multi-strange
baryons.Comment: 10 pages, 7 postscript figure
Triangle-Free Penny Graphs: Degeneracy, Choosability, and Edge Count
We show that triangle-free penny graphs have degeneracy at most two, list
coloring number (choosability) at most three, diameter , and
at most edges.Comment: 10 pages, 2 figures. To appear at the 25th International Symposium on
Graph Drawing and Network Visualization (GD 2017
Impairment of a model peptide by oxidative stress: Thermodynamic stabilities of asparagine diamide C(alpha)-radical foldamers
Electron structure calculations on N-acetyl asparagine N-methylamide were performed to identify the global minimum from which radicals were formed after H-abstraction by the OH radical. It was found that the radical generated by breaking the C–H bond of the alpha-carbon was thermodynamically the most stable one in the gas- and aqueous phases. The extended ((beta)L and (beta)D) backbone conformations are the most stable, but syn–syn or inverse gamma-turn ((gamma)L) and gamma-turn ((gamma)D) have substantial stability too. The highest energy conformers are the degenerate eL and eD foldamers. Clearly, the most stable beta foldamer is the most likely intermediate for racemization
AMR, stability and higher accuracy
Efforts to achieve better accuracy in numerical relativity have so far
focused either on implementing second order accurate adaptive mesh refinement
or on defining higher order accurate differences and update schemes. Here, we
argue for the combination, that is a higher order accurate adaptive scheme.
This combines the power that adaptive gridding techniques provide to resolve
fine scales (in addition to a more efficient use of resources) together with
the higher accuracy furnished by higher order schemes when the solution is
adequately resolved. To define a convenient higher order adaptive mesh
refinement scheme, we discuss a few different modifications of the standard,
second order accurate approach of Berger and Oliger. Applying each of these
methods to a simple model problem, we find these options have unstable modes.
However, a novel approach to dealing with the grid boundaries introduced by the
adaptivity appears stable and quite promising for the use of high order
operators within an adaptive framework
TYC 2675-663-1: A newly discovered W UMa system in an active state
The recently discovered eclipsing binary system TYC 2675-663-1 is a X-ray
source, and shows properties in the optical that are similar to the W UMa
systems, but are somewhat unusual compared to what is seen in other contact
binary systems. The goal of this work is to characterize its properties and
investigate its nature by means of detailed photometric and spectroscopic
observations. We have performed extensive V-band photometric measurements with
the INTEGRAL satellite along with ground-based multi-band photometric
observations, as well as high-resolution spectroscopic monitoring from which we
have measured the radial velocities of the components. These data have been
analysed to determine the stellar properties, including the absolute masses and
radii. Additional low-resolution spectroscopy was obtained to investigate
spectral features. From the measured eclipse timings we determine an orbital
period for the binary of P=0.4223576+-0.0000009 days. The light-curve and
spectroscopic analyses reveal the observations to be well represented by a
model of an overcontact system composed of main-sequence F5 and G7 stars
(temperature difference of nearly 1000 K), with the possible presence of a
third star. Low-resolution optical spectroscopy reveals a complex H alpha
emission, and other features that are not yet understood. The unusually large
mass ratio of q=0.81+-0.05 places it in the rare "H" (high mass ratio) subclass
of the W UMa systems, which are presumably on their way to coalescence.Comment: 12 pages in double column format. Accepted for publication in
Astronomy and Astrophysic
K2-137 b: an Earth-sized planet in a 4.3-hour orbit around an M-dwarf
We report the discovery from K2 of a transiting terrestrial planet in an
ultra-short-period orbit around an M3-dwarf. K2-137 b completes an orbit in
only 4.3 hours, the second-shortest orbital period of any known planet, just 4
minutes longer than that of KOI 1843.03, which also orbits an M-dwarf. Using a
combination of archival images, AO imaging, RV measurements, and light curve
modelling, we show that no plausible eclipsing binary scenario can explain the
K2 light curve, and thus confirm the planetary nature of the system. The
planet, whose radius we determine to be 0.89 +/- 0.09 Earth radii, and which
must have a iron mass fraction greater than 0.45, orbits a star of mass 0.463
+/- 0.052 Msol and radius 0.442 +/- 0.044 Rsol.Comment: 12 pages, 9 figures, accepted for publication in MNRA
Examining the orbital decay targets KELT-9 b, KELT-16 b, and WASP-4b, and the transit-timing variations of HD 97658 b
Context. Tidal orbital decay is suspected to occur for hot Jupiters in particular, with the only observationally confirmed case of this being WASP-12b. By examining this effect, information on the properties of the host star can be obtained using the so-called stellar modified tidal quality factor Q*′, which describes the efficiency with which the kinetic energy of the planet is dissipated within the star. This can provide information about the interior of the star.
Aims. In this study, we aim to improve constraints on the tidal decay of the KELT-9, KELT-16, and WASP-4 systems in order to find evidence for or against the presence of tidal orbital decay. With this, we want to constrain the Q*′ value for each star. In addition, we aim to test the existence of the transit timing variations (TTVs) in the HD 97658 system, which previously favoured a quadratic trend with increasing orbital period.
Methods. Making use of newly acquired photometric observations from CHEOPS (CHaracterising ExOplanet Satellite) and TESS (Transiting Exoplanet Survey Satellite), combined with archival transit and occultation data, we use Markov chain Monte Carlo (MCMC) algorithms to fit three models to the data, namely a constant-period model, an orbital-decay model, and an apsidal-precession model.
Results. We find that the KELT-9 system is best described by an apsidal-precession model for now, with an orbital decay trend at over 2 σ being a possible solution as well. A Keplerian orbit model with a constant orbital period provides the best fit to the transit timings of KELT-16 b because of the scatter and scale of their error bars. The WASP-4 system is best represented by an orbital decay model at a 5 σ significance, although apsidal precession cannot be ruled out with the present data. For HD 97658 b, using recently acquired transit observations, we find no conclusive evidence for a previously suspected strong quadratic trend in the data
- …