100 research outputs found
Changes in Floquet state structure at avoided crossings: delocalization and harmonic generation
Avoided crossings are common in the quasienergy spectra of strongly driven
nonlinear quantum wells. In this paper we examine the sinusoidally driven
particle in a square potential well to show that avoided crossings can alter
the structure of Floquet states in this system. Two types of avoided crossings
are identified: on type leads only to temporary changes (as a function of
driving field strength) in Floquet state structure while the second type can
lead to permanent delocalization of the Floquet states. Radiation spectra from
these latter states show significant increase in high harmonic generation as
the system passes through the avoided crossing.Comment: 8 pages with 10 figures submitted to Physical Review
Landau damping in thin films irradiated by a strong laser field
The rate of linear collisionless damping (Landau damping) in a classical
electron gas confined to a heated ionized thin film is calculated. The general
expression for the imaginary part of the dielectric tensor in terms of the
parameters of the single-particle self-consistent electron potential is
obtained. For the case of a deep rectangular well, it is explicitly calculated
as a function of the electron temperature in the two limiting cases of specular
and diffuse reflection of the electrons from the boundary of the
self-consistent potential. For realistic experimental parameters, the
contribution of Landau damping to the heating of the electron subsystem is
estimated. It is shown that for films with a thickness below about 100 nm and
for moderate laser intensities it may be comparable with or even dominate over
electron-ion collisions and inner ionization.Comment: 15 pages, 2 figure
The Influence of Meat Batter Composition and Sausage Diameter on Microbiota and Sensory Traits of Artisanal Wild Boar Meat Sausages
U ovom radu istražen je utjecaj sastava mesnog nadjeva i promjera kobasica na razvoj mikrobiote i senzornih osobina tradicijskih, spontano fermentiranih kobasica od mesa divlje svinje. Ovo istraživanje pokazuje kako se analizom glavnih komponenata mogu povezati senzorna svojstva proizvoda s određenim sojem bakterija, te za selekciju potencijalnih starter kultura. Općenito govoreći, nakon mikrobioloških analiza svih vrsta proizvedenih kobasica dobiveni su slični rezultati. Niti u jednoj fazi proizvodnje kobasica nije detektirana neželjena mikrobiota ili je njezin broj u zrelim kobasicama bio ispod granice detekcije. Niska stopa rasta bakterija mliječne kiseline bila je u skladu s dobivenim pH-vrijednostima i sporom stopom zakiseljavanja. Iako nisu uočene razlike u sastavu vrsta bakterija mliječne kiseline između različitih tipova kobasica (50S=50 % mesa divlje svinje u tankom ovitku, 50L=50 % mesa divlje svinje u debelom ovitku, 100S= 100 % mesa divlje svinje u tankom ovitku), moglo se opaziti jasno odvajanje na osnovi genotipova pojedinih bakterija. Kvantitativnom opisnom analizom utvrđene su bitne razlike u senzornim značajkama različitih vrsta kobasica. Prema analizi glavnih komponenata, svojstva dopadljivosti kobasica usko su povezana s jednim genotipom Leuconostoc mesenteroides (LM_4). Od svih ispitanih tehnoloških svojstava, sojevi LM_4 pokazali su izuzetnu sposobnost zakiseljavanja, snižavajući pH-vrijednost s 5,41 na 3,74, te izrazito proteolitičko djelovanje u obranom mlijeku, te antagonističku aktivnost prema bakterijama Staphylococcus aureus (DSM 20231) i Brochothrix thermosphacta (LMG 17208). Lipolitička i hemolitička aktivnost nije detektirana, a svi analizirani sojevi bili su osjetljivi na testirane antibiotike i nisu posjedovali gene za biogene amine.In this study, the influence of meat batter composition and sausage diameter on the development of microbiota and sensory traits of traditional, spontaneously fermented wild boar meat sausages are evaluated. This research also demonstrates how principal component analysis (PCA) can be used to relate product sensory properties to particular microbial genotype and to select potential starter or adjunct culture. Generally, similar microbiological results were obtained in all types of products. The undesirable microbiota was either not detected at any sausage production stage or its number decreased below the detection limit in ripened sausages. The low growth rate of lactic acid bacteria (LAB) was consistent with the obtained pH and slow acidification rate. Although no differences in the composition of LAB species were noticed between sausage types (50S=50 % wild boar meat in small casing, 50L=50 % wild boar meat in large casing, 100S=100 % wild boar meat in small casing), a clear separation based on LAB genotypes could be observed. Upon quantitative descriptive analysis, significant differences in sensory attributes between sausage types were established. According to the PCA, the overall acceptability traits of sausages are closely linked to one Leuconostoc mesenteroides genotype (LM_4). Of all tested technological properties, LM_4 strains showed remarkable acidification ability, lowering the pH from pH=5.41 to 3.74, and pronounced proteolytic activity on skimmed milk as well as antagonistic activity against Staphylococcus aureus (DSM 20231) and Brochothrix thermosphacta (LMG 17208). Lipolytic and haemolytic activities were not detected, and all analyzed strains were susceptible to tested antibiotics and possessed no biogenic amine genes
Compared to conventional, ecological intensive management promotes beneficial proteolytic soil microbial communities for agro-ecosystem functioning under climate change-induced rain regimes
Projected climate change and rainfall variability will affect soil microbial communities, biogeochemical cycling and agriculture. Nitrogen (N) is the most limiting nutrient in agroecosystems and its cycling and availability is highly dependent on microbial driven processes. In agroecosystems, hydrolysis of organic nitrogen (N) is an important step in controlling soil N availability. We analyzed the effect of management (ecological intensive vs. conventional intensive) on N-cycling processes and involved microbial communities under climate change-induced rain regimes. Terrestrial model ecosystems originating from agroecosystems across Europe were subjected to four different rain regimes for 263 days. Using structural equation modelling we identified direct impacts of rain regimes on N-cycling processes, whereas N-related microbial communities were more resistant. In addition to rain regimes, management indirectly affected N-cycling processes via modifications of N-related microbial community composition. Ecological intensive management promoted a beneficial N-related microbial community composition involved in N-cycling processes under climate change-induced rain regimes. Exploratory analyses identified phosphorus-associated litter properties as possible drivers for the observed management effects on N-related microbial community composition. This work provides novel insights into mechanisms controlling agro-ecosystem functioning under climate change
Reviews and syntheses: The promise of big diverse soil data, moving current practices towards future potential
In the age of big data, soil data are more available and richer than ever, but – outside of a few large soil survey resources – they remain largely unusable for informing soil management and understanding Earth system processes beyond the original study.
Data science has promised a fully reusable research pipeline where data from past studies are used to contextualize new findings and reanalyzed for new insight.
Yet synthesis projects encounter challenges at all steps of the data reuse pipeline, including unavailable data, labor-intensive transcription of datasets, incomplete metadata, and a lack of communication between collaborators.
Here, using insights from a diversity of soil, data, and climate scientists, we summarize current practices in soil data synthesis across all stages of database creation: availability, input, harmonization, curation, and publication.
We then suggest new soil-focused semantic tools to improve existing data pipelines, such as ontologies, vocabulary lists, and community practices.
Our goal is to provide the soil data community with an overview of current practices in soil data and where we need to go to fully leverage big data to solve soil problems in the next century
Overview of the PALM model system 6.0
In this paper, we describe the PALM model system 6.0. PALM (formerly an abbreviation for Parallelized Largeeddy Simulation Model and now an independent name) is a Fortran-based code and has been applied for studying a variety of atmospheric and oceanic boundary layers for about 20 years. The model is optimized for use on massively parallel computer architectures. This is a follow-up paper to the PALM 4.0 model description in Maronga et al. (2015). During the last years, PALM has been significantly improved and now offers a variety of new components. In particular, much effort was made to enhance the model with components needed for applications in urban environments, like fully interactive land surface and radiation schemes, chemistry, and an indoor model. This paper serves as an overview paper of the PALM 6.0 model system and we describe its current model core. The individual components for urban applications, case studies, validation runs, and issues with suitable input data are presented and discussed in a series of companion papers in this special issue
Recommended from our members
Evaluation of fast atmospheric dispersion models in a regular street network
The need to balance computational speed and simulation accuracy is a key challenge in designing atmospheric dispersion models that can be used in scenarios where near real-time hazard predictions are needed. This challenge is aggravated in cities, where models need to have some degree of building-awareness, alongside the ability to capture effects of dominant urban flow processes. We use a combination of high-resolution large-eddy simulation (LES) and wind-tunnel data of flow and dispersion in an idealised, equal-height urban canopy to highlight important dispersion processes and evaluate how these are reproduced by representatives of the most prevalent modelling approaches: (i) a Gaussian plume model, (ii) a Lagrangian stochastic model and (iii) street-network dispersion models. Concentration data from the LES, validated against the wind-tunnel data, were averaged over the volumes of streets in order to provide a high-fidelity reference suitable for evaluating the different models on the same footing. For the particular combination of forcing wind direction and source location studied here, the strongest deviations from the LES reference were associated with mean over-predictions of concentrations by approximately a factor of 2 and with a relative scatter larger than a factor of 4 of the mean, corresponding to cases where the mean plume centreline also deviated significantly from the LES. This was linked to low accuracy of the underlying flow models/parameters that resulted in a misrepresentation of pollutant channelling along streets and of the uneven plume branching observed in intersections. The agreement of model predictions with the LES (which explicitly resolves the turbulent flow and dispersion processes) greatly improved by increasing the accuracy of building-induced modifications of the driving flow field. When provided with a limited set of representative velocity parameters, the comparatively simple street-network models performed equally well or better compared to the Lagrangian model run on full 3D wind fields. The study showed that street-network models capture the dominant building-induced dispersion processes in the canopy layer through parametrisations of horizontal advection and vertical exchange processes at scales of practical interest. At the same time, computational costs and computing times associated with the network approach are ideally suited for emergency-response applications
Recommended from our members
Measurements and computations of flow in an urban street system
We present results from laboratory and computational experiments on the turbulent flow over an array of rectangular blocks modelling a typical, asymmetric urban canopy at various orientations to the approach flow. The work forms part of a larger study on dispersion within such arrays (project DIPLOS) and concentrates on the nature of the mean flow and turbulence fields within the canopy region, recognising that unless the flow field is adequately represented in computationalmodels there is no reason to expect realistic simulations of the nature of the dispersion of pollutants emitted within the canopy. Comparisons between the experimental data and those obtained from both large-eddy simulation (LES) and direct numerical simulation (DNS) are shown and it is concluded that careful use of LES can produce generally excellent agreement with laboratory and DNS results, lending further confidence in the use of LES for such situations. Various crucial issues are discussed and advice offered to both experimentalists and those seeking to compute canopy flows with turbulence resolving models
Multifaceted roles of GSK-3 and Wnt/β-catenin in hematopoiesis and leukemogenesis: opportunities for therapeutic intervention
Glycogen synthase kinase-3 (GSK-3) is well documented to participate in a complex array of critical cellular processes. It was initially identified in rat skeletal muscle as a serine/threonine kinase that phosphorylated and inactivated glycogen synthase. This versatile protein is involved in numerous signaling pathways that influence metabolism, embryogenesis, differentiation, migration, cell cycle progression and survival. Recently, GSK-3 has been implicated in leukemia stem cell pathophysiology and may be an appropriate target for its eradication. In this review, we will discuss the roles that GSK-3 plays in hematopoiesis and leukemogenesis as how this pivotal kinase can interact with multiple signaling pathways such as: Wnt/β-catenin, phosphoinositide 3-kinase (PI3K)/phosphatase and tensin homolog (PTEN)/Akt/mammalian target of rapamycin (mTOR), Ras/Raf/MEK/extracellular signal-regulated kinase (ERK), Notch and others. Moreover, we will discuss how targeting GSK-3 and these other pathways can improve leukemia therapy and may overcome therapeutic resistance. In summary, GSK-3 is a crucial regulatory kinase interacting with multiple pathways to control various physiological processes, as well as leukemia stem cells, leukemia progression and therapeutic resistance. GSK-3 and Wnt are clearly intriguing therapeutic targets
- …