1,220 research outputs found

    Asymptotic safety of scalar field theories

    Get PDF
    We study 3d O(N)symmetric scalar field theories using Polchinski's renormalisation group. In the infinite N limit the model is solved exactly including at strong coupling. At short distances the theory is described by a line of asymptotically safe ultraviolet fixed points bounded by asymptotic freedom at weak, and the Bardeen-Moshe-Bander phenomenon at strong sextic coupling. The Wilson-Fisher fixed point arises as an isolated low-energy fixed point. Further results include the conformal window for asymptotic safety, convergence-limiting poles in the complex field plane, and the phase diagram with regions of first and second order phase transitions. We substantiate a duality between Polchinski's and Wetterich's versions of the functional renormalisation group, also showing that that eigenperturbations are identical at any fixed point. At a critical sextic coupling, the duality is worked out in detail to explain the spontaneous breaking of scale symmetry responsible for the generation of a light dilaton. Implications for asymptotic safety in other theories are indicated

    Application of the Frobenius method to the Schrodinger equation for a spherically symmetric potential: anharmonic oscillator

    Full text link
    The power series method has been adapted to compute the spectrum of the Schrodinger equation for central potential of the form V(r)=d−2r2+d−1r+∑i=0∞diriV(r)={d_{-2}\over r^2}+{d_{-1}\over r}+\sum_{i=0}^{\infty} d_{i}r^i. The bound-state energies are given as zeros of a calculable function, if the potential is confined in a spherical box. For an unconfined potential the interval bounding the energy eigenvalues can be determined in a similar way with an arbitrarily chosen precision. The very accurate results for various spherically symmetric anharmonic potentials are presented.Comment: 16 pages, 5 figures, published in J. Phys

    A search for edge-on galaxy lenses in the CFHT Legacy Survey

    Full text link
    [ABRIDGED] The new generation of wide field optical imaging like the Canada France Hawaii Telescope Legacy Survey (CFHTLS) enables discoveries of all types of gravitational lenses present in the sky. The Strong Lensing Legacy Survey (SL2S) project has started an inventory, respectively for clusters or groups of galaxies lenses, and for Einstein rings around distant massive ellipticals. Here we attempt to extend this inventory by finding lensing events produced by massive edge-on disk galaxies which remains a poorly documented class of lenses. We implement and test an automated search procedure of edge-on galaxy lenses in the CFHTLS Wide fields with magnitude 18Comment: several major edits, 8 pages, A&A accepte

    EWPD Constraints on Flavor Symmetric Vector Fields

    Get PDF
    Electroweak precision data constraints on flavor symmetric vector fields are determined. The flavor multiplets of spin one that we examine are the complete set of fields that couple to quark bi-linears at tree level while not initially breaking the quark global flavor symmetry group. Flavor safe vector masses proximate to, and in some cases below, the electroweak symmetry breaking scale are found to be allowed. Many of these fields provide a flavor safe mechanism to explain the t tbar forward backward anomaly, and can simultaneously significantly raise the allowed values of the Standard Model Higgs mass consistent with electroweak precision data.Comment: Matches version published in JHE

    Galactic Collapse of Scalar Field Dark Matter

    Full text link
    We present a scenario for galaxy formation based on the hypothesis of scalar field dark matter. We interpret galaxy formation through the collapse of a scalar field fluctuation. We find that a cosh potential for the self-interaction of the scalar field provides a reasonable scenario for galactic formation, which is in agreement with cosmological observations and phenomenological studies in galaxies.Comment: 4 pages, 3 figue

    Off-Critical Logarithmic Minimal Models

    Full text link
    We consider the integrable minimal models M(m,m′;t){\cal M}(m,m';t), corresponding to the φ1,3\varphi_{1,3} perturbation off-criticality, in the {\it logarithmic limit\,} m,m′→∞m, m'\to\infty, m/m′→p/p′m/m'\to p/p' where p,p′p, p' are coprime and the limit is taken through coprime values of m,m′m,m'. We view these off-critical minimal models M(m,m′;t){\cal M}(m,m';t) as the continuum scaling limit of the Forrester-Baxter Restricted Solid-On-Solid (RSOS) models on the square lattice. Applying Corner Transfer Matrices to the Forrester-Baxter RSOS models in Regime III, we argue that taking first the thermodynamic limit and second the {\it logarithmic limit\,} yields off-critical logarithmic minimal models LM(p,p′;t){\cal LM}(p,p';t) corresponding to the φ1,3\varphi_{1,3} perturbation of the critical logarithmic minimal models LM(p,p′){\cal LM}(p,p'). Specifically, in accord with the Kyoto correspondence principle, we show that the logarithmic limit of the one-dimensional configurational sums yields finitized quasi-rational characters of the Kac representations of the critical logarithmic minimal models LM(p,p′){\cal LM}(p,p'). We also calculate the logarithmic limit of certain off-critical observables Or,s{\cal O}_{r,s} related to One Point Functions and show that the associated critical exponents βr,s=(2−α) Δr,sp,p′\beta_{r,s}=(2-\alpha)\,\Delta_{r,s}^{p,p'} produce all conformal dimensions Δr,sp,p′<(p′−p)(9p−p′)4pp′\Delta_{r,s}^{p,p'}<{(p'-p)(9p-p')\over 4pp'} in the infinitely extended Kac table. The corresponding Kac labels (r,s)(r,s) satisfy (ps−p′r)2<8p(p′−p)(p s-p' r)^2< 8p(p'-p). The exponent 2−α=p′2(p′−p)2-\alpha ={p'\over 2(p'-p)} is obtained from the logarithmic limit of the free energy giving the conformal dimension Δt=1−α2−α=2p−p′p′=Δ1,3p,p′\Delta_t={1-\alpha\over 2-\alpha}={2p-p'\over p'}=\Delta_{1,3}^{p,p'} for the perturbing field tt. As befits a non-unitary theory, some observables Or,s{\cal O}_{r,s} diverge at criticality.Comment: 18 pages, 5 figures; version 3 contains amplifications and minor typographical correction

    Magnetization of a two-dimensional electron gas with a second filled subband

    Get PDF
    We have measured the magnetization of a dual-subband two-dimensional electron gas, confined in a GaAs/AlGaAs heterojunction. In contrast to two-dimensional electron gases with a single subband, we observe non-1/B-periodic, triangularly shaped oscillations of the magnetization with an amplitude significantly less than 1μB∗1 \mu_{\mathrm{B}}^* per electron. All three effects are explained by a field dependent self-consistent model, demonstrating the shape of the magnetization is dominated by oscillations in the confining potential. Additionally, at 1 K, we observe small oscillations at magnetic fields where Landau-levels of the two different subbands cross.Comment: 4 pages, 4 figure

    The Initial Mass Function in disc galaxies and in galaxy clusters: the chemo-photometric picture

    Full text link
    The observed brightness of the Tully-Fisher relation suggests a low stellar M/L ratio and a "bottom-light" IMF in disc galaxies, but the corresponding efficiency of chemical enrichment tends to exceed the observational estimates. Either suitable tuning of the IMF slope and mass limits or metal outflows from disc galaxies must then be invoked. A standard Solar Neighbourhood IMF cannot explain the high metallicity of the hot intra-cluster medium: a different IMF must be at work in clusters of galaxies. Alternatively, if the IMF is universal and chemical enrichment is everywhere as efficient as observed in clusters, substantial loss of metals must occur from the Solar Neighbourhood and from disc galaxies in general; a "non-standard" scenario challenging our understanding of disc galaxy formation.Comment: 6 pages, 4 figures; in Proceedings of IMF@50: the Initial Mass Function 50 years later; Corbelli, Palla and Zinnecker (eds.

    The EoR Sensitivity of the Murchison Widefield Array

    Get PDF
    Using the final 128 antenna locations of the Murchison Widefield Array (MWA), we calculate its sensitivity to the Epoch of Reionization (EoR) power spectrum of red- shifted 21 cm emission for a fiducial model and provide the tools to calculate the sensitivity for any model. Our calculation takes into account synthesis rotation, chro- matic and asymmetrical baseline effects, and excludes modes that will be contaminated by foreground subtraction. For the fiducial model, the MWA will be capable of a 14{\sigma} detection of the EoR signal with one full season of observation on two fields (900 and 700 hours).Comment: 5 pages, 4 figures, 1 table, Accepted for publication in MNRAS Letters. Supplementary material will be available in the published version, or by contacting the author
    • …
    corecore