445 research outputs found

    Infrared Diagnostics for the Extended 12 micron Sample of Seyferts

    Full text link
    We present an analysis of Spitzer IRS spectroscopy of 83 active galaxies from the extended 12 micron sample. We find rank correlations between several tracers of star formation which suggest that (1) the PAH feature is a reliable tracer of star formation, (2) there is a significant contribution to the heating of the cool dust by stars, (3) the H2_2 emission is also primarily excited by star formation. The 55-90 vs. 20-30 spectral index plot is also a diagnostic of the relative contribution of Starburst to AGN. We see there is a large change in spectral index across the sample. Thus, the contribution to the IR spectrum from the AGN and starburst components can be comparable in magnitude but the relative contribution also varies widely across the sample. We find rank correlations between several AGN tracers. We search for correlations between AGN and Starburst tracers and we conclude that the AGN and Starburst tracers are not correlated. This is consistent with our conclusion that the relative strength of the AGN and Starburst components varies widely across the sample. Thus, there is no simple link between AGN fueling and Black Hole Growth and star formation in these galaxies. The distribution of Sil 10 micron and 18 micron strengths is consistent with the clumpy torus models of Sirocky et al. We find a rank correlation between the [NeV] 14 micron line and the 6.7 micron continuum which may be due to an extended component of hot dust. The Sy 2s with a Hidden Broad Line Region (HBLR) have a higher ratio of AGN to Starburst contribution to the SED than Sy 2s without an HBLR. This may contribute to the detection of the HBLR in polarized light. The Sy 2s with an HBLR are more similar to the Sy 1s than they are to the Sy 2s without an HBLR

    A Search for Molecular Gas in GHz Peaked Spectrum Radio Sources

    Get PDF
    We present searches for molecular gas (CO, OH, CS, and Ammonia) in six GHz Peaked Spectrum (GPS) radio sources. We do not detect gas in any source and place upper limits on the mass of molecular gas which are generally in the range 1E9 to a few times 1E10 solar masses. These limits are consistent with the following interpretations: (1) GPS sources do not require very dense gas in their hosts, and (2) The GPS sources are unlikely to be confined by dense gas and will evolve to become larger radio sources

    Evidence for Ordered Magnetic Fields in the Quasar Environment

    Get PDF
    At a distance of 20 pc from the purported supermassive black hole powering quasars, temperatures and densities are inferred from optical observations to be ~10**4 K and ~10**4 cm**-3. Here we present Very Long Baseline Interferometry radio observations revealing organized magnetic fields on the parsec scale in the hot plasma surrounding the quasar OQ172 (1442+101). These magnetic fields rotate the plane of polarization of the radio emission coming from the core and inner jet of the quasar. The derived rotation measure (RM) is 40,000 rad m**-2 in the rest frame of the quasar. Only 10 mas (a projected distance of 68 pc) from the nucleus the jet absolute values of RM fall to less than 100 rad m**-2.Comment: in press at ApJ Letters, 12 page LaTeX document includes 4 postscript figure

    HI absorption in 3C 49 and 3C 268.3. Probing the environment of Compact Steep Spectrum and GHz Peaked Spectrum sources

    Get PDF
    We present and discuss European VLBI Network UHF band spectral line observations, made to localise the redshifted 21cm HI absorption known to occur in the subgalactic sized compact steep spectrum galaxies 3C 49 and 3C 268.3. We have detected HI absorption towards the western radio lobe of 3C 49 and the northern lobe of 3C 268.3. However, we cannot rule out the presence of similar amounts of HI towards the opposite and much fainter lobes. The radio lobes with detected HI absorption (1) are brighter and closer to the core than the opposite lobes; (2) are depolarized; and (3) are associated with optical emission line gas. The association between the HI absorption and the emission line gas, supports the hypothesis that the HI absorption is produced in the atomic cores of the emission line clouds. Our results are consistent with a picture in which compact steep spectrum sources interact with clouds of dense gas as they propagate through their host galaxy. We suggest that the asymmetries in the radio and optical emission can be due to interaction of a two sided radio source with an asymmetric distribution of dense clouds in their environment.Comment: 7 pages, 6 figures. Accepted in A&

    Large-Scale Outflows in Edge-on Seyfert Galaxies. I. Optical Emission- Line Imaging and Optical Spectroscopy

    Get PDF
    We have launched a search for large-scale (\gapprox1 kpc) minor-axis outflows in edge-on Seyfert galaxies in order to assess their frequency of occurrence and study their properties. Here we present optical continuum and \han2 line images and/or minor-axis long-slit spectra of 22 edge-on Seyfert galaxies. Six of these galaxies show at least one of the following: (i) bi-symmetric Hα\alpha halos extending along the minor axis, (ii) bright emission-line complexes at distances \gapprox4 kpc (in projection) out of the disk, and (iii) double-peaked emission-line profiles from the gas along the minor-axis, suggesting that a wind-blown bubble is present. Our results indicate that \gapprox14{{1}\over{4}} of Seyferts have good evidence for minor-axis galactic outflows. Kinetic luminosities of the galactic outflows in our sample Seyferts are \sim1040^{40}-1042^{42} erg~s1^{-1}, assuming all of the observed minor-axis emission is produced by the outflow. These values are, in general, \sim0.1 as large as those for well-studied cases of superwinds in starburst galaxies (Heckman, Armus \& Miley 1990). However, far-infrared luminosities of our sample Seyferts are also \sim0.1 as large. Both starburst-driven superwinds and wide-angled outflows from the active galactic nucleus are possible explanations for the observed large-scale outflows.Comment: 34 pages (text and tables) AASTEX, figures available from [email protected], ApJ Supp., June 199

    Measurement of the Crab nebula polarization at 90 GHz as a calibrator for CMB experiments

    Full text link
    CMB experiments aiming at a precise measurement of the CMB polarization, such as the Planck satellite, need a strong polarized absolute calibrator on the sky to accurately set the detectors polarization angle and the cross-polarization leakage. As the most intense polarized source in the microwave sky at angular scales of few arcminutes, the Crab nebula will be used for this purpose. Our goal was to measure the Crab nebula polarization characteristics at 90 GHz with unprecedented precision. The observations were carried out with the IRAM 30m telescope employing the correlation polarimeter XPOL and using two orthogonally polarized receivers. We processed the Stokes I, Q, and U maps from our observations in order to compute the polarization angle and linear polarization fraction. The first is almost constant in the region of maximum emission in polarization with a mean value of alpha_Sky=152.1+/-0.3 deg in equatorial coordinates, and the second is found to reach a maximum of Pi=30% for the most polarized pixels. We find that a CMB experiment having a 5 arcmin circular beam will see a mean polarization angle of alpha_Sky=149.9+/-0.2 deg and a mean polarization fraction of Pi=8.8+/-0.2%.Comment: Accepted for publication in A&A, 9 pages, 4 figure

    The puzzling case of the radio-loud QSO 3C 186: a gravitational wave recoiling black hole in a young radio source?

    Get PDF
    Context. Radio-loud AGNs with powerful relativistic jets are thought to be associated with rapidly spinning black holes (BHs). BH spin-up may result from a number of processes, including accretion of matter onto the BH itself, and catastrophic events such as BH-BH mergers. Aims. We study the intriguing properties of the powerful (L_bol ~ 10^47 erg s^-1) radio-loud quasar 3C 186. This object shows peculiar features both in the images and in the spectra. Methods. We utilize near-IR Hubble Space Telescope (HST) images to study the properties of the host galaxy, and HST UV and Sloan Digital Sky Survey optical spectra to study the kinematics of the source. Chandra X-ray data are also used to better constrain the physical interpretation. Results. HST imaging shows that the active nucleus is offset by 1.3 +- 0.1 arcsec (i.e. ~11 kpc) with respect to the center of the host galaxy. Spectroscopic data show that the broad emission lines are offset by -2140 +-390 km/s with respect to the narrow lines. Velocity shifts are often seen in QSO spectra, in particular in high-ionization broad emission lines. The host galaxy of the quasar displays a distorted morphology with possible tidal features that are typical of the late stages of a galaxy merger. Conclusions. A number of scenarios can be envisaged to account for the observed features. While the presence of a peculiar outflow cannot be completely ruled out, all of the observed features are consistent with those expected if the QSO is associated with a gravitational wave (GW) recoiling BH. Future detailed studies of this object will allow us to confirm this type of scenario and will enable a better understanding of both the physics of BH-BH mergers and the phenomena associated with the emission of GW from astrophysical sources.Comment: 16 pages, 8 figures. Accepted for publication in Astronomy & Astrophysics. New appendix adde
    corecore