754 research outputs found
Estimación de rendimientos de soja y maíz a partir de variables edafoclimáticas
Estimación de rendimientos de soja y maíz a partir de variables edafoclimáticasFil: Coronel, Alejandra. Universidad Nacional de Rosario. Facultad de Ciencias Agrarias; Argentin
Periodic fever syndrome and autoinflammatory diseases
The concept of autoinflammatory disease as a new disease classification has resulted in a paradigm shift in our understanding of the the broad spectrum of immunological diseases. The effectiveness of interleukin-1 blockade in a variety of disorders has resulted in a marked reduction in suffering for many of these patients
Optimization of Indium Bump Morphology for Improved Flip Chip Devices
Flip-chip hybridization, also known as bump bonding, is a packaging technique for microelectronic devices that directly connects an active element or detector to a substrate readout face-to-face, eliminating the need for wire bonding. In order to make conductive links between the two parts, a solder material is used between the bond pads on each side. Solder bumps, composed of indium metal, are typically deposited by thermal evaporation onto the active regions of the device and substrate. While indium bump technology has been a part of the electronic interconnect process field for many years and has been extensively employed in the infrared imager industry, obtaining a reliable, high-yield process for high-density patterns of bumps can be quite difficult. Under the right conditions, a moderate hydrogen plasma exposure can raise the temperature of the indium bump to the point where it can flow. This flow can result in a desirable shape where indium will efficiently wet the metal contact pad to provide good electrical contact to the underlying readout or imager circuit. However, it is extremely important to carefully control this process as the intensity of the hydrogen plasma treatment dramatically affects the indium bump morphology. To ensure the fine-tuning of this reflow process, it is necessary to have realtime feedback on the status of the bumps. With an appropriately placed viewport in a plasma chamber, one can image a small field (a square of approximately 5 millimeters on each side) of the bumps (10-20 microns in size) during the hydrogen plasma reflow process. By monitoring the shape of the bumps in real time using a video camera mounted to a telescoping 12 magnifying zoom lens and associated optical elements, an engineer can precisely determine when the reflow of the bumps has occurred, and can shut off the plasma before evaporation or de-wetting takes place
Two-Step Plasma Process for Cleaning Indium Bonding Bumps
A two-step plasma process has been developed as a means of removing surface oxide layers from indium bumps used in flip-chip hybridization (bump bonding) of integrated circuits. The two-step plasma process makes it possible to remove surface indium oxide, without incurring the adverse effects of the acid etching process
Characterising a human endogenous retrovirus(HERV)-derived tumour-associated antigen: enriched RNA-Seq analysis of HERV-K(HML-2) in mantle cell lymphoma cell lines.
BACKGROUND: The cell-surface attachment protein (Env) of the HERV-K(HML-2) lineage of endogenous retroviruses is a potentially attractive tumour-associated antigen for anti-cancer immunotherapy. The human genome contains around 100 integrated copies (called proviruses or loci) of the HERV-K(HML-2) virus and we argue that it is important for therapy development to know which and how many of these contribute to protein expression, and how this varies across tissues. We measured relative provirus expression in HERV-K(HML-2), using enriched RNA-Seq analysis with both short- and long-read sequencing, in three Mantle Cell Lymphoma cell lines (JVM2, Granta519 and REC1). We also confirmed expression of the Env protein in two of our cell lines using Western blotting, and analysed provirus expression data from all other relevant published studies. RESULTS: Firstly, in both our and other reanalysed studies, approximately 10% of the transcripts mapping to HERV-K(HML-2) came from Env-encoding proviruses. Secondly, in one cell line the majority of the protein expression appears to come from one provirus (12q14.1). Thirdly, we find a strong tissue-specific pattern of provirus expression. CONCLUSIONS: A possible dependency of Env expression on a single provirus, combined with the earlier observation that this provirus is not present in all individuals and a general pattern of tissue-specific expression among proviruses, has serious implications for future HERV-K(HML-2)-targeted immunotherapy. Further research into HERV-K(HML-2) as a possible tumour-associated antigen in blood cancers requires a more targeted, proteome-based, screening protocol that will consider these polymorphisms within HERV-K(HML-2). We include a plan (and necessary alignments) for such work
Banana seed genetic resources for food security: status, constraints, and future priorities
Open Access Journal; Published online: 15 Nov 2021Storing seed collections of crop wild relatives, wild plant taxa genetically related to crops, is an essential component in global food security. Seed banking protects genetic resources from degradation and extinction and provides material for use by breeders. Despite being among the most important crops in the world, banana and plantain crop wild relatives are largely under-represented in genebanks. Nevertheless, banana crop wild relative seed collections are in fact held in different countries, but these have not previously been part of reporting or analysis. To fill this gap, we firstly collated banana seed accession data from 13 institutions in 10 countries. These included 537 accessions containing an estimated 430,000 seeds of 56 species. We reviewed their taxonomic coverage and seed storage conditions including viability estimates. We found that seed accessions have low viability (25% mean) representing problems in seed storage and processing. Secondly, we surveyed 22 institutions involved in banana genetic resource conservation regarding the key constraints and knowledge gaps that institutions face related to banana seed conservation. Major constraints were identified including finding suitable material and populations to collect seeds from, lack of knowledge regarding optimal storage conditions and germination conditions. Thirdly, we carried out a conservation prioritization and gap analysis of Musaceae taxa, using established methods, to index representativeness. Overall, our conservation assessment showed that despite this extended data set banana crop wild relatives are inadequately conserved, with 51% of taxa not represented in seed collections at all; the average conservation assessment showing high priority for conservation according to the index. Finally, we provide recommendations for future collecting, research, and management, to conserve banana and plantain crop wild relatives in seed banks for future generations
The Brain Health Index: Towards a combined measure of neurovascular and neurodegenerative structural brain injury
Background:
A structural magnetic resonance imaging measure of combined neurovascular and neurodegenerative burden may be useful as these features often coexist in older people, stroke and dementia.
Aim:
We aimed to develop a new automated approach for quantifying visible brain injury from small vessel disease and brain atrophy in a single measure, the brain health index.
Materials and methods:
We computed brain health index in N = 288 participants using voxel-based Gaussian mixture model cluster analysis of T1, T2, T2*, and FLAIR magnetic resonance imaging. We tested brain health index against a validated total small vessel disease visual score and white matter hyperintensity volumes in two patient groups (minor stroke, N = 157; lupus, N = 51) and against measures of brain atrophy in healthy participants (N = 80) using multiple regression. We evaluated associations with Addenbrooke’s Cognitive Exam Revised in patients and with reaction time in healthy participants.
Results:
The brain health index (standard beta = 0.20–0.59, P < 0.05) was significantly and more strongly associated with Addenbrooke’s Cognitive Exam Revised, including at one year follow-up, than white matter hyperintensity volume (standard beta = 0.04–0.08, P > 0.05) and small vessel disease score (standard beta = 0.02–0.27, P > 0.05) alone in both patient groups. Further, the brain health index (standard beta = 0.57–0.59, P < 0.05) was more strongly associated with reaction time than measures of brain atrophy alone (standard beta = 0.04–0.13, P > 0.05) in healthy participants.
Conclusions:
The brain health index is a new image analysis approach that may usefully capture combined visible brain damage in large-scale studies of ageing, neurovascular and neurodegenerative disease
Using seminatural and simulated habitats for seed germination ecology of banana wild relatives
Open Access JournalEcologically meaningful seed germination experiments are constrained by access to seeds and relevant environments for testing at the same time. This is particularly the case when research is carried out far from the native area of the studied species. Here, we demonstrate an alternative—the use of glasshouses in botanic gardens as simulated-natural habitats to extend the ecological interpretation of germination studies. Our focal taxa were banana crop wild relatives (Musa acuminata subsp. burmannica, Musa acuminata subsp. siamea, and Musa balbisiana), native to tropical and subtropical South-East Asia. Tests were carried out in Belgium, where we performed germination tests in relation to foliage-shading/exposure to solar radiation and seed burial depth, as well as seed survival and dormancy release in the soil. We calibrated the interpretation of these studies by also conducting an experiment in a seminatural habitat in a species native range (M. balbisiana—Los Baños, the Philippines), where we tested germination responses to exposure to sun/shade. Using temperature data loggers, we determined temperature dynamics suitable for germination in both these settings. In these seminatural and simulated-natural habitats, seeds germinated in response to exposure to direct solar radiation. Seed burial depth had a significant but marginal effect by comparison, even when seeds were buried to 7 cm in the soil. Temperatures at sun-exposed compared with shaded environments differed by only a few degrees Celsius. Maximum temperature of the period prior to germination was the most significant contributor to germination responses and germination increased linearly above a threshold of 23℃ to the maximum temperature in the soil (in simulated-natural habitats) of 35℃. Glasshouses can provide useful environments to aid interpretation of seed germination responses to environmental niches
Filter exchange imaging with crusher gradient modelling detects increased blood–brain barrier water permeability in response to mild lung infection
Blood–brain barrier (BBB) dysfunction occurs in many brain diseases, and there is increasing evidence to suggest that it is an early process in dementia which may be exacerbated by peripheral infection. Filter-exchange imaging (FEXI) is an MRI technique for measuring trans-membrane water exchange. FEXI data is typically analysed using the apparent exchange rate (AXR) model, yielding estimates of the AXR. Crusher gradients are commonly used to remove unwanted coherence pathways arising from longitudinal storage pulses during the mixing period. We first demonstrate that when using thin slices, as is needed for imaging the rodent brain, crusher gradients result in underestimation of the AXR. To address this, we propose an extended crusher-compensated exchange rate (CCXR) model to account for diffusion-weighting introduced by the crusher gradients, which is able to recover ground truth values of BBB water exchange (kin) in simulated data. When applied to the rat brain, kin estimates obtained using the CCXR model were 3.10 s−1 and 3.49 s−1 compared to AXR estimates of 1.24 s−1 and 0.49 s−1 for slice thicknesses of 4.0 mm and 2.5 mm respectively. We then validated our approach using a clinically relevant Streptococcus pneumoniae lung infection. We observed a significant 70 ± 10% increase in BBB water exchange in rats during active infection (kin = 3.78 ± 0.42 s−1) compared to before infection (kin = 2.72 ± 0.30 s−1; p = 0.02). The BBB water exchange rate during infection was associated with higher levels of plasma von Willebrand factor (VWF), a marker of acute vascular inflammation. We also observed 42% higher expression of perivascular aquaporin-4 (AQP4) in infected animals compared to non-infected controls, while levels of tight junction proteins remain consistent between groups. In summary, we propose a modelling approach for FEXI data which removes the bias in estimated water-exchange rates associated with the use of crusher gradients. Using this approach, we demonstrate the impact of peripheral infection on BBB water exchange, which appears to be mediated by endothelial dysfunction and associated with an increase in perivascular AQP4
- …