25,271 research outputs found
Quasi-Topological Field Theories in Two Dimensions as Soluble Models
We study a class of lattice field theories in two dimensions that includes
gauge theories. Given a two dimensional orientable surface of genus , the
partition function is defined for a triangulation consisting of
triangles of area . The reason these models are called
quasi-topological is that depends on , and but not on the
details of the triangulation. They are also soluble in the sense that the
computation of their partition functions can be reduced to a soluble one
dimensional problem. We show that the continuum limit is well defined if the
model approaches a topological field theory in the zero area limit, i.e.,
with finite . We also show that the universality classes of
such quasi-topological lattice field theories can be easily classified.
Yang-Mills and generalized Yang-Mills theories appear as particular examples of
such continuum limits.Comment: 23 pages, 16 figures, uses psbox.te
Theory of interlayer exchange interactions in magnetic multilayers
This paper presents a review of the phenomenon of interlayer exchange
coupling in magnetic multilayers. The emphasis is put on a pedagogical
presentation of the mechanism of the phenomenon, which has been successfully
explained in terms of a spin-dependent quantum confinement effect. The
theoretical predictions are discussed in connection with corresponding
experimental investigations.Comment: 18 pages, 4 PS figures, LaTeX with IOP package; v2: ref. added.
Further (p)reprints available from http://www.mpi-halle.de/~theory
Multi-mode ultra-strong coupling in circuit quantum electrodynamics
With the introduction of superconducting circuits into the field of quantum
optics, many novel experimental demonstrations of the quantum physics of an
artificial atom coupled to a single-mode light field have been realized.
Engineering such quantum systems offers the opportunity to explore extreme
regimes of light-matter interaction that are inaccessible with natural systems.
For instance the coupling strength can be increased until it is comparable
with the atomic or mode frequency and the atom can be coupled to
multiple modes which has always challenged our understanding of light-matter
interaction. Here, we experimentally realize the first Transmon qubit in the
ultra-strong coupling regime, reaching coupling ratios of
and we measure multi-mode interactions through a hybridization of the qubit up
to the fifth mode of the resonator. This is enabled by a qubit with 88% of its
capacitance formed by a vacuum-gap capacitance with the center conductor of a
coplanar waveguide resonator. In addition to potential applications in quantum
information technologies due to its small size and localization of electric
fields in vacuum, this new architecture offers the potential to further explore
the novel regime of multi-mode ultra-strong coupling.Comment: 15 pages, 9 figure
Recommended from our members
Development of a portable leaf photosynthesis and volatile organic compounds emission system.
Understanding how plant carbon metabolism responds to environmental variables such as light is central to understanding ecosystem carbon cycling and the production of food, biofuels, and biomaterials. Here, we couple a portable leaf photosynthesis system to an autosampler for volatile organic compounds (VOCs) to enable field observations of net photosynthesis simultaneously with emissions of VOCs as a function of light. Following sample collection, VOCs are analyzed using automated thermal desorption-gas chromatograph-mass spectrometry (TD-GC-MS). An example is presented from a banana plant in the central Amazon with a focus on the response of photosynthesis and the emissions of eight individual monoterpenes to light intensity. Our observations reveal that banana leaf emissions represent a 1.1 +/- 0.1% loss of photosynthesis by carbon. Monoterpene emissions from banana are dominated by trans-β-ocimene, which accounts for up to 57% of total monoterpene emissions at high light. We conclude that the developed system is ideal for the identification and quantification of VOC emissions from leaves in parallel with CO2 and water fluxes.The system therefore permits the analysis of biological and environmental sensitivities of carbon metabolism in leaves in remote field locations, resulting in the emission of hydrocarbons to the atmosphere.•A field-portable system is developed for the identification and quantification of VOCs from leaves in parallel with leaf physiological measurements including photosynthesis and transpiration.•The system will enable the characterization of carbon and energy allocation to the biosynthesis and emission of VOCs linked with photosynthesis (e.g. isoprene and monoterpenes) and their biological and environmental sensitivities (e.g. light, temperature, CO2).•Allow the development of more accurate mechanistic global VOC emission models linked with photosynthesis, improving our ability to predict how forests will respond to climate change. It is our hope that the presented system will contribute with critical data towards these goals across Earth's diverse tropical forests
Turbulence transition and the edge of chaos in pipe flow
The linear stability of pipe flow implies that only perturbations of
sufficient strength will trigger the transition to turbulence. In order to
determine this threshold in perturbation amplitude we study the \emph{edge of
chaos} which separates perturbations that decay towards the laminar profile and
perturbations that trigger turbulence. Using the lifetime as an indicator and
methods developed in (Skufca et al, Phys. Rev. Lett. {\bf 96}, 174101 (2006))
we show that superimposed on an overall -scaling predicted and studied
previously there are small, non-monotonic variations reflecting folds in the
edge of chaos. By tracing the motion in the edge we find that it is formed by
the stable manifold of a unique flow field that is dominated by a pair of
downstream vortices, asymmetrically placed towards the wall. The flow field
that generates the edge of chaos shows intrinsic chaotic dynamics.Comment: 4 pages, 5 figure
On the Thermodynamic Limit in Random Resistors Networks
We study a random resistors network model on a euclidean geometry \bt{Z}^d.
We formulate the model in terms of a variational principle and show that, under
appropriate boundary conditions, the thermodynamic limit of the dissipation per
unit volume is finite almost surely and in the mean. Moreover, we show that for
a particular thermodynamic limit the result is also independent of the boundary
conditions.Comment: 14 pages, LaTeX IOP journal preprint style file `ioplppt.sty',
revised version to appear in Journal of Physics
Magnetic relaxation of exchange biased (Pt/Co) multilayers studied by time-resolved Kerr microscopy
Magnetization relaxation of exchange biased (Pt/Co)5/Pt/IrMn multilayers with
perpendicular anisotropy was investigated by time-resolved Kerr microscopy.
Magnetization reversal occurs by nucleation and domain wall propagation for
both descending and ascending applied fields, but a much larger nucleation
density is observed for the descending branch, where the field is applied
antiparallel to the exchange bias field direction. These results can be
explained by taking into account the presence of local inhomogeneities of the
exchange bias field.Comment: To appear in Physical Review B (October 2005
Dialectical polyptych: an interactive movie
Most of the known video games developed by big software companies usually establish an approach to the cinematic language in an attempt to create a perfect combination of narrative, visual technique and interaction. Unlike most video games, interactive film narratives normally involve an interruption in time whenever the spectator has to make choices. “Dialectical Polyptych” is an interactive movie included in a project called “Characters looking for a spect-actor”, which aims to give the spectator on-the-fly control over film editing, thus exploiting the role of the spectator as an active subject in the presented narrative. This paper presents a system based on a 3D sensor for tracking the spectator's movements and positions, which allows seamless real-timeinteractivity with the movie. Different positions of the body prompt a change in the angle or shot within each narrative, and hand swipes allow the spectator to alternate between the two parallel narratives, both producing a complementary narrative.info:eu-repo/semantics/publishedVersio
- …