We study a random resistors network model on a euclidean geometry \bt{Z}^d.
We formulate the model in terms of a variational principle and show that, under
appropriate boundary conditions, the thermodynamic limit of the dissipation per
unit volume is finite almost surely and in the mean. Moreover, we show that for
a particular thermodynamic limit the result is also independent of the boundary
conditions.Comment: 14 pages, LaTeX IOP journal preprint style file `ioplppt.sty',
revised version to appear in Journal of Physics