584 research outputs found

    A counterfactual Rydberg gate for photons

    Full text link
    Quantum computation with photons requires efficient two photon gates. We put forward a two photon entangling gate which uses an intermediate atomic system. The system includes a single Rydberg atom which can switch on and off photon absorption in an ensemble using the dipole blockade. The gate is based in a counterfactual protocol. The mere possibility of an absorption that can only occur with a vanishing probability steers the photons to the desired final state.Comment: 4 Figures. 6 pages of tex

    Universal quantum computation with the Orbital Angular Momentum of a single photon

    Full text link
    We prove that a single photon with quantum data encoded in its orbital angular momentum can be manipulated with simple optical elements to provide any desired quantum computation. We will show how to build any quantum unitary operator using beamsplitters, phase shifters, holograms and an extraction gate based on quantum interrogation. The advantages and challenges of these approach are then discussed, in particular the problem of the readout of the results.Comment: First version. Comments welcom

    A record of eruption and intrusion at a fast spreading ridge axis : axial summit trough of the East Pacific Rise at 9–10°N

    Get PDF
    Author Posting. © American Geophysical Union, 2009. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 10 (2009): Q10T07, doi:10.1029/2008GC002354.High-resolution side-scan sonar, near-bottom multibeam bathymetry, and deep-sea photo and bathymetry traverses are used to map the axial summit trough (AST) at the East Pacific Rise between 9 and 10°N. We define three ridge axis morphologic types: no AST, narrow AST, and wide AST, which characterize distinct ridge crest domains spanning tens of kilometers along strike. Near-bottom observations, modeling of deformation above intruding dikes, and comparisons to the geologic and geophysical structure of the ridge crest are used to develop a revised model of AST genesis and evolution. This model helps constrain the record of intrusive and extrusive magmatism and styles of lava deposition along the ridge crest at time scales from hundreds to tens of thousands of years. The grabens in the narrow-AST domain (9°43′–53′N) are consistent with deformation above the most recent (<10) diking events beneath the ridge crest. Frequent high–effusion rate extrusive volcanism in this domain (several eruptions every ∼100 years) overprints near-axis deformation and maintains a consistent AST width. The most recent eruption at the ridge crest occurred in this area and did not significantly modify the physical characteristics of the AST. The grabens in the wide-AST domain (9°23′–43′N) originated with similar dimensions to the narrow AST. Spreading, driven primarily by the intrusion of shallow dikes within a narrow axial zone, causes the initial graben bounding faults to migrate away from the axis. Infrequent extrusive volcanism (several eruptions every ∼1000 years) fills a portion of the subsidence that accumulates over time but does not significantly modify the width of the AST. Outside of these domains, lower–effusion rate constructional volcanism without efficient drain-back fills and erases the signature of the AST. The relative frequency of intrusive versus extrusive magmatic events controls the morphology of the ridge crest and appears to remain constant over millennial time scales within the domains we have identified; however, over longer time scales (∼10–25 ka), domain-specific intrusive-to-extrusive ratios do not appear to be fixed in space, resulting in a fairly consistent volcanic accretion over the length scale of the second-order ridge segment between 9°N and 10°N.This work was supported by NSF grants OCE-0525863 to D. Fornari and S. A. Soule; OCE-0732366 to S. A. Soule; and OCE-9819261 to H. Schouten, M. Tivey, and D. Fornari and by CNRS to J. Escartın

    Upper crustal velocity structure beneath the central Lucky Strike Segment from seismic refraction measurements

    Get PDF
    Geochemistry Geophysics Geosystems, vol. 11, pp. Q05001, 21 pp, 2010International audienceWe present a three-dimensional velocity model of the upper crust around the central volcano of the Lucky Strike Segment, Mid-Atlantic Ridge. The model, constructed from a 3-D array of air gun shots (37.5 m spacing along line and 100 m between lines) to ocean bottom seismometers fired during a 3-D seismic reflection survey, shows an off-axis velocity increase (∼1 km/s), a low-velocity region within the median valley, and a low-velocity anomaly underneath the Lucky Strike volcano. Our observations indicate a porosity decrease of 1%–9% (corresponding to a velocity increase of ∼0.5–1 km/s) over a distance of 8 km from the ridge axis (∼0.7 Ma) and a porosity decrease of 4%–11% (corresponding to a velocity increase of ∼2 km/s) between a depth of 0.5 and 1.75 km below seafloor. A sinusoidal variation in the traveltime residuals indicates the presence of azimuthal anisotropy with cracks aligned approximately along the ridge axis. We favor an interpretation in which upper crustal porosities are created by a combination of magmatic accretion (lava–sheeted dike boundary) and active extension (faults, fractures, and fissures). The porosity variation with depth probably depends on pore space collapse, hydrothermal alteration, and a change of stress accommodation. The off-axis porosities are possibly influenced by both hydrothermal precipitation and the aging of the crust

    Frictional Heating Processes and Energy Budget During Laboratory Earthquakes

    Get PDF
    International audienceDuring an earthquake, part of the released elastic strain energy is dissipated within the slip zone by frictional and fracturing processes, the rest being radiated away via elastic waves. While frictional heating plays a key role in the energy budget of earthquakes, it could not be resolved by seismological data up to now. Here we investigate the dynamics of laboratory earthquakes by measuring frictional heat dissipated during the propagation of shear instabilities at stress conditions typical of seismogenic depths. We estimate the complete energy budget of earthquake rupture and demonstrate that the radiation efficiency increases with thermal-frictional weakening. Using carbon properties and Raman spectroscopy, we map spatial heat heterogeneities on the fault surface. We show that an increase in fault strength corresponds to a transition from a weak fault with multiple strong asperities and little overall radiation, to a highly radiative fault behaving as a single strong asperity. Plain Language Summary In nature, earthquakes occur when the stress accumulated in a medium is released by frictional sliding on faults. The stress released is dissipated into fracture and heat energy or radiated through seismic waves. The seismic efficiency of an earthquake is a measure of the fraction of the energy that is radiated away into the host medium. Because faults are at inaccessible depths, we reproduce earthquakes in the laboratory under natural in situ conditions to understand the physical processes leading to dynamic rupture. We estimate the first complete energy budget of an earthquake and show that increasing heat dissipation on the fault increases the radiation efficiency. We develop a novel method to illuminate areas of the fault that get excessively heated up. We finally introduce the concept of spontaneously developing heat asperities, playing a major role in the radiation of seismic waves during an earthquake

    Type Ia supernovae and the ^{12}C+^{12}C reaction rate

    Get PDF
    The experimental determination of the cross-section of the ^{12}C+^{12}C reaction has never been made at astrophysically relevant energies (E<2 MeV). The profusion of resonances throughout the measured energy range has led to speculation that there is an unknown resonance at E\sim1.5 MeV possibly as strong as the one measured for the resonance at 2.14 MeV. We study the implications that such a resonance would have for the physics of SNIa, paying special attention to the phases that go from the crossing of the ignition curve to the dynamical event. We use one-dimensional hydrostatic and hydrodynamic codes to follow the evolution of accreting white dwarfs until they grow close to the Chandrasekhar mass and explode as SNIa. In our simulations, we account for a low-energy resonance by exploring the parameter space allowed by experimental data. A change in the ^{12}C+^{12}C rate similar to the one explored here would have profound consequences for the physical conditions in the SNIa explosion, namely the central density, neutronization, thermal profile, mass of the convective core, location of the runaway hot spot, or time elapsed since crossing the ignition curve. For instance, with the largest resonance strength we use, the time elapsed since crossing the ignition curve to the supernova event is shorter by a factor ten than for models using the standard rate of ^{12}C+^{12}C, and the runaway temperature is reduced from \sim8.14\times10^{8} K to \sim4.26\times10^{8} K. On the other hand, a resonance at 1.5 MeV, with a strength ten thousand times smaller than the one measured at 2.14 MeV, but with an {\alpha}/p yield ratio substantially different from 1 would have a sizeable impact on the degree of neutronization of matter during carbon simmering. We conclude that a robust understanding of the links between SNIa properties and their progenitors will not be attained until the ^{12}C+^{12}C reaction rate is measured at energies \sim1.5 MeV.Comment: 15 pages, 6 tables, 10 figures, accepted for Astronomy and Astrophysic

    Ciliary Neurotrophic Factor Protects Striatal Neurons against Excitotoxicity by Enhancing Glial Glutamate Uptake

    Get PDF
    Ciliary neurotrophic factor (CNTF) is a potent neuroprotective cytokine in different animal models of glutamate-induced excitotoxicity, although its action mechanisms are still poorly characterized. We tested the hypothesis that an increased function of glial glutamate transporters (GTs) could underlie CNTF-mediated neuroprotection. We show that neuronal loss induced by in vivo striatal injection of the excitotoxin quinolinic acid (QA) was significantly reduced (by ∼75%) in CNTF-treated animals. In striatal slices, acute QA application dramatically inhibited corticostriatal field potentials (FPs), whose recovery was significantly higher in CNTF rats compared to controls (∼40% vs. ∼7%), confirming an enhanced resistance to excitotoxicity. The GT inhibitor dl-threo-β-benzyloxyaspartate greatly reduced FP recovery in CNTF rats, supporting the role of GT in CNTF-mediated neuroprotection. Whole-cell patch-clamp recordings from striatal medium spiny neurons showed no alteration of basic properties of striatal glutamatergic transmission in CNTF animals, but the increased effect of a low-affinity competitive glutamate receptor antagonist (γ-d-glutamylglycine) also suggested an enhanced GT function. These data strongly support our hypothesis that CNTF is neuroprotective via an increased function of glial GTs, and further confirms the therapeutic potential of CNTF for the clinical treatment of progressive neurodegenerative diseases involving glutamate overflow
    • …
    corecore