8 research outputs found

    Vortex Rings in a Stratified Fluid

    Get PDF

    Estimation of kinetic energy dissipation from breaking waves in the wave crest region

    No full text
    Wave-induced turbulence due to breaking in the absence of surface shear stresses is investigated experimentally. A high-fidelity particle image velocimetry (PIV) technique is used to measure the turbulence near the water surface, inside the wave crests. The spatial velocity vector fields of the breaking waves acquired from PIV provide accurate vertical velocity profiles near the air-water interface, as well as wavenumber velocity spectra beneath the breaking waves at different depths. These velocity spectra exhibit a Kolmogorov interval at high wavenumbers, indicating the presence of isotropic turbulence and permitting an estimation of energy dissipation rates. The depth dependence of dissipation rates of the breaking waves generated in the laboratory shows a scaling similar to that found in wind-forced breaking waves in the field. A phase dependence in the dissipation rates of turbulence kinetic energy is also observed, which should be considered to improve the accuracy of the estimated and modeled wave energy dissipation

    An investigation of channel flow with a smooth air-water interface

    Get PDF
    Published online: 9 June 2015. This article belongs to a Topical Collection of articles entitled Extreme Flow Workshop 2014. Guest Editors: I. Marusic and B. J. McKeon.Experiments and numerical simulation are used to investigate fully developed laminar and turbulent channel flow with an air–water interface as the lower boundary condition. Laser Doppler velocimetry measurements of streamwise and wall-normal velocity components are made over a range of Reynolds number based upon channel height and bulk velocity from 1100 to 4300, which encompasses the laminar, transitional and low Reynolds numbers turbulent regimes. The results show that the airflow statistics near the stationary wall are not significantly altered by the air–water moving interface and reflect those found in channel flows. The mean statistics on the water interface side largely exhibit results similar to simulated Poiseuille–Couette flow (PCF) with a solid moving wall. For second-order statistics, however, the simulation and experimental results show some discrepancies near the moving water surface, suggesting that a full two-phase simulation is required. A momentum and energy transport tubes analysis is investigated for laminar and turbulent PCFs. This analysis builds upon the classical notion of a streamtube and indicates that part of the energy from the pressure gradient is transported towards the stationary wall and is dissipated as heat inside the energy tubes, while the remainder is transmitted to the moving wall. For the experiments, the airflow energy is transmitted towards the water to overcome the drag force and drive the water forward; therefore, the amount of energy transferred to the water is higher than the energy transferred to a solid moving wall.Reza Madad, John Elsnab, Cheng Chin, Joseph Klewicki, Ivan Marusi

    Sea ice floes dissipate the energy of steep ocean waves

    No full text
    A laboratory experimental model of an incident ocean wave interacting with an ice floe is used to validate the canonical, solitary floe version of contemporary theoretical models of wave attenuation in the ice-covered ocean. Amplitudes of waves transmitted by the floe are presented as functions of incident wave steepness for different incident wavelengths. The model is shown to predict the transmitted amplitudes accurately for low incident steepness but to overpredict the amplitudes by an increasing amount, as the incident wave becomes steeper. The proportion of incident wave energy dissipated by the floe in the experiments is shown to correlate with the agreement between the theoretical model and the experimental data, thus implying that wave-floe interactions increasingly dissipate wave energy as the incident wave becomes steeper. Key Points Wave scattering theory alone is not sufficient to predict attenuation of waves Wave energy is not conserved during wave-ice interactions Turbulent bores at the floes front and rear edges induce dissipatio
    corecore