351 research outputs found

    Generation of radiative knots in a randomly pulsed protostellar jet I. Dynamics and energetics

    Full text link
    HH objects are characterized by a complex knotty morphology detected mainly along the axis of protostellar jets in a wide range of bands. Evidence of interactions between knots formed in different epochs have been found, suggesting that jets may result from the ejection of plasma blobs from the source. We aim at investigating the physical mechanism leading to the irregular knotty structure observed in jets in different bands and the complex interactions occurring among blobs of plasma ejected from the stellar source. We perform 2D axisymmetric HD simulations of a randomly ejected pulsed jet. The jet consists of a train of blobs which ram with supersonic speed into the ambient medium. The initial random velocity of each blob follows an exponential distribution. We explore the ejection rate parameter to derive constraints on the physical properties of protostellar jets by comparison of model results with observations. Our model takes into account radiative losses and thermal conduction. We find that the mutual interactions of blobs ejected at different epochs and with different speed lead to a variety of plasma components not described by current models. The main features characterizing the random pulsed jet scenario are: single high speed knots, showing a measurable proper motion in nice agreement with observations; irregular chains of knots aligned along the jet axis and possibly interacting with each other; reverse shocks interacting with outgoing knots; oblique shocks produced by the reflection of shocks at the jet cocoon. All these structures concur to determine the morphology of the jet in different bands. We also find that the thermal conduction plays a crucial role in damping out HD instabilities that would develop within the cocoon and that contribute to the jet breaking.Comment: 10 pages, 10 figures, accepted for publication in A&

    Variability in young very low mass stars : two surprises from spectrophotometric monitoring

    Get PDF
    The authors acknowledge support from the Science & Technology Facilities Council through grants no. ST/K502339/1 and ST/M001296/1.We present simultaneous photometric and spectroscopic observations of seven young and highly variable M dwarfs in star-forming regions in Orion, conducted in four observing nights with FOcal Reducer and low dispersion Spectrograph2 at European Southern Observatory/VLT. All seven targets show significant photometric variability in the I band, with amplitudes between 0.1–0.8 mag, The spectra, however, remain remarkably constant, with spectral type changes less than 0.5 subtypes. Thus, the brightness changes are not caused by veiling that ‘fills in’ absorption features. Three objects in the σ Ori cluster (age ∌3 Myr) exhibit strong Hα emission and Hα variability, in addition to the continuum variations. Their behaviour is mostly consistent with the presence of spots with temperature of ∌300 K above the photosphere and filling factors between 0.2–0.4, in contrast to typical hotspots observed in more massive stars. The remaining targets near ϔ Ori, likely to be older, show eclipse-like light curves, no significant Hα activity and are better represented by variable extinction due to circumstellar material. Interestingly, two of them show no evidence of infrared excess emission. Our study shows that high-amplitude variability in young very low mass stars can be caused by different phenomena than in more massive T Tauri stars and can persist when the disc has disappeared and accretion has ceased.Publisher PDFPeer reviewe

    The low-mass diskless population of Corona Australis

    Get PDF
    We combine published optical and near-infrared photometry to identify new low-mass candidate members in an area of about 0.64 deg^2 in Corona Australis with the S-parameter method. Five new candidate members of the region are selected. They have estimated ages between 3 and 15 Myr and masses between 0.05 and 0.15 M_⊙. With Spitzer photometry we confirm that these objects are not surrounded by optically thick disks. However, one of them is found to display excess at 24 ÎŒm, thus suggesting it harbors a disk with an inner hole. With an estimated mass of 0.07 M_⊙ according to the SED fitting, this is one of the lowest-mass objects reported to possess a transitional disk. Including these new members, the fraction of disks is about 50% among the total Corona Australis population selected by the same criteria, lower than the 70% fraction reported earlier for this region. Even so, we find a ratio of transitional to primordial disks (45%) very similar to the value derived by previous authors. This ratio is higher than for solar-type stars (5–10%), suggesting that disk evolution is faster in the latter, and/or that the “transitional disk” stage is not such a short-lived step for very low-mass objects. However, this impression needs to be confirmed with better statistics

    Physical properties of the jet from DG Tauri on sub-arcsecond scales with HST/STIS

    Full text link
    We derive the physical properties at the base of the jet from DG Tau both along and across the flow and as a function of velocity. We analysed seven optical spectra of the DG Tau jet, taken with the Hubble Space Telescope Imaging Spectrograph. The spectra were obtained by placing a long-slit parallel to the jet axis and stepping it across the jet width. The resulting position-velocity diagrams in optical forbidden emission lines allowed access to plasma conditions via calculation of emission line ratios. We find at the base of the jet high electron density, ne∌n_e \sim 105^5, and very low ionisation, xe∌0.02−0.05x_e \sim 0.02-0.05, which combine to give a total density up to nH∌n_H \sim 3 106^6. This analysis confirms previous reports of variations in plasma parameters along the jet, (i.e. decrease in density by several orders of magnitude, increase of xex_e from 0.05 to a plateau at 0.7 downstream at 2â€Čâ€Č'' from the star). Furthermore, a spatial coincidence is revealed between sharp gradients in the total density and supersonic velocity jumps. This strongly suggests that the emission is caused by shock excitation. The position-velocity diagrams indicate the presence of both fast accelerating gas and slower, less collimated material. We derive the mass outflow rate, M˙j\dot{M}_j, in the blue-shifted lobe in different velocity channels, that contribute to a total of M˙j∌\dot{M}_j \sim 8 ±\pm 4 10−9^{-9} M⊙_\odot yr−1^{-1}. We estimate that a symmetric bipolar jet would transport at the low and intermediate velocities probed by rotation measurements, an angular momentum flux of L˙j∌\dot{L}_j \sim 2.9 ±\pm 1.5 10−6^{-6} M⊙_\odot yr−1^{-1} AU km s−1^{-1}. The derived properties of the DG Tau jet are demonstrated to be consistent with magneto-centrifugal theory. However, non-stationary modelling is required in order to explain all of the features revealed at high resolution.Comment: 16 pages, 18 figure

    Discovery of superthermal hydroxyl (OH) in the HH211 outflow

    Full text link
    We present a 5-37 micron infrared spectrum obtained with the Spitzer Space Telescope toward the southeastern lobe of the young protostellar outflow HH211. The spectrum shows an extraordinary sequence of OH emission lines arising in highly excited rotational levels up to an energy E/k~28200K above the ground level. This is, to our knowledge, by far the highest rotational excitation of OH observed outside Earth. The spectrum also contains several pure rotational transitions of H2O (v=0), H2 (v=0) S(0) to S(7), HD (v=0) R(3) to R(6), and atomic fine-structure lines of [Fe II], [Si II], [Ne II], [S I], and [Cl I]. The origin of the highly excited OH emission is most likely the photodissociation of H2O by the UV radiation generated in the terminal outflow shock of HH211.Comment: ApJ Letters, in pres

    Precession of collimated outflows from young stellar objects

    Full text link
    We consider several protostellar systems where either a precessing jet or at least two misaligned jets have been observed. We assume that the precession of jets is caused by tidal interactions in noncoplanar binary systems. For Cep E, V1331 Cyg and RNO 15-FIR the inferred orbital separations and disk radii are in the range 4-160 AU and 1-80 AU, respectively, consistent with those expected for pre-main sequence stars. Furthermore, we assume or use the fact that the source of misaligned outflows is a binary, and evaluate the lengthscale over which the jets should precess as a result of tidal interactions. For T Tau, HH1 VLA 1/2 and HH 24 SVS63, it may be possible to detect a bending of the jets rather than 'wiggling'. In HH 111 IRS and L1551 IRS5, 'wiggling' may be detected on the current observed scale. Our results are consistent with the existence of noncoplanar binary systems in which tidal interactions induce jets to precess.Comment: 5 pages (including 1 figure), LaTeX, uses emulateapj.sty, to be published in ApJ Letters, also available at http://www.ucolick.org/~ct/home.html and http://www.tls-tautenburg.de/research/research.htm

    An S-shaped outflow from IRAS 03256+3055 in NGC 1333

    Full text link
    The IRAS source 03256+3055 in the NGC 1333 star forming region is associated with extended sub-millimeter emission of complex morphology, showing multiple clumps. One of these is found to coincide with the driving source of a bipolar jet of S-shaped morphology seen in the emission lines of H_alpha and [SII] as well as in the H2 emission lines in the K-band. Detailed images of the driving source at the wavelengths of H_alpha and [SII] and in the I, J, H, and K bands as well as a K-band spectrum and polarimetry are discussed. The near-infrared morphology is characterized by a combination of line emission from the jet and scattered light from a source with a steep continuum spectrum. The morphology and proper motion of the jet are discussed in the context of a binary system with a precessing disk. We conclude that the molecular core associated with IRAS 03256+3055 consists of several clumps, only one of which shows evidence of recent star formation at optical and near-infrared wavelengths.We also briefly discuss a second, newly found near-infrared source associated with a compact sub-millimeter continuum source near IRAS 03256+3055, and conclude that this source may be physically unrelated the cluster of molecular clumps.Comment: 25 pages, including 5 figures. Accepted for publication in The Astronomical Journa
    • 

    corecore