5,260 research outputs found

    Kilometric radiation power flux dependence on area of discrete aurora

    Get PDF
    Kilometer wavelength radiation, measured from distant positions over the North Pole and over the Earth's equator, was compared to the area of discrete aurora imaged by several low-altitude spacecraft. Through correlative studies of auroral kilometric radiation (AKR) with about two thousand auroral images, a stereoscopic view of the average auroral acceleration region was obtained. A major result is that the total AKR power increases as the area of the discrete auroral oval increases. The implications are that the regions of parallel potentials or the auroral plasma cavities, in which AKR is generated, must possess the following attributes: (1) they are shallow in altitude and their radial position depends on wavelength, (2) they thread flux tubes of small cross section, (3) the generation mechanism in them reaches a saturation limit rapidly, and (4) their distribution over the discrete auroral oval is nearly uniform. The above statistical results are true for large samples collected over a long period of time (about six months). In the short term, AKR frequently exhibits temporal variations with scales as short as three minutes (the resolution of the averaged data used). These fluctuations are explainable by rapid quenchings as well as fast starts of the electron cyclotron maser mechanism. There were times when AKR was present at substantial power levels while optical emissions were below instrument thresholds. A recent theoretical result may account for this set of observations by predicting that suprathermal electrons, of energies as low as several hundred eV, can generate second harmonic AKR. The indirect observations of second harmonic AKR require that these electrons have mirror points high above the atmosphere so as to minimize auroral light emissions. The results provide evidence supporting the electron cyclotron maser mechanism

    Thrust production and chordal flexion of the flukes of bottlenose dolphins performing tail stands at different efforts

    Get PDF
    Dolphins have become famous for their ability to perform a wide variety of athletic and acrobatic behaviors including high-speed swimming, maneuverability, porpoising and tail stands. Tail stands are a behavior where part of the body is held vertically above the water\u27s surface, achieved through thrust produced by horizontal tail fluke oscillations. Strong, efficient propulsors are needed to generate the force required to support the dolphin\u27s body weight, exhibiting chordwise and spanwise flexibility throughout the stroke cycle. To determine how thrust production, fluke flexibility and tail stroke kinematics vary with effort, six adult bottlenose dolphins (Tursiops truncatus) were tested at three different levels based on the position of the center of mass (COM) relative to the water\u27s surface: low (COM below surface), medium (COM at surface) and high (COM above surface) effort. Additionally, fluke flexibility was measured as a flex index (FI=chord length/camber length) at four points in the stroke cycle: center stroke up (CU), extreme top of stroke (ET), center stroke down (CD) and extreme bottom of stroke (EB). Video recordings were analyzed to determine the weight supported above the water (thrust production), peak-to-peak amplitude, stroke frequency and FI. Force production increased with low, medium and high efforts, respectively. Stroke frequency also increased with increased effort. Amplitude remained constant with a mean 33.8% of body length. Significant differences were seen in the FI during the stroke cycle. Changes in FI and stroke frequency allowed for increased force production with effort, and the peak-to-peak amplitude was higher compared with that for horizontal swimming

    Medicaid spending burden among beneficiaries with treatment-resistant depression.

    Get PDF
    AIM: To evaluate Medicaid spending and healthcare resource utilization (HRU) in treatment-resistant depression (TRD). MATERIALS & METHODS: TRD beneficiaries were identified from Medicaid claims databases (January 2010-March 2017) and matched 1:1 with major depressive disorder (MDD) beneficiaries without TRD (non-TRD-MDD) and randomly selected patients without MDD (non-MDD). Differences in HRU and per-patient-per-year costs were reported in incidence rate ratios (IRRs) and cost differences (CDs), respectively. RESULTS: TRD beneficiaries had higher HRU than 1:1 matched non-TRD-MDD (e.g., inpatient visits: IRR = 1.41) and non-MDD beneficiaries (N = 14,710 per cohort; e.g., inpatient visits: IRR = 3.42, p \u3c 0.01). TRD beneficiaries incurred greater costs versus non-TRD-MDD (CD = US4382)andnonMDDbeneficiaries(CD=US4382) and non-MDD beneficiaries (CD = US8294; p \u3c 0.05). CONCLUSION: TRD is associated with higher HRU and costs versus non-TRD-MDD and non-MDD. TRD poses a significant burden to Medicaid

    Latitudinal extension of low-latitude scintillations measured with a network of GPS receivers

    Get PDF
    International audienceA latitudinal-distributed network of GPS receivers has been operating within Colombia, Peru and Chile with sufficient latitudinal span to measure the absolute total electron content (TEC) at both crests of the equatorial anomaly. The network also provides the latitudinal extension of GPS scintillations and TEC depletions. The GPS-based information has been supplemented with density profiles collected with the Jicamarca digisonde and JULIA power maps to investigate the background conditions of the nighttime ionosphere that prevail during the formation and the persistence of plasma depletions. This paper presents case-study events in which the latitudinal extension of GPS scintillations, the maximum latitude of TEC depletion detections, and the altitude extension of radar plumes are correlated with the location and extension of the equatorial anomaly. Then it shows the combined statistics of GPS scintillations, TEC depletions, TEC latitudinal profiles, and bottomside density profiles collected between September 2001 and June 2002. It is demonstrated that multiple sights of TEC depletions from different stations can be used to estimate the drift of the background plasma, the tilt of the plasma plumes, and in some cases even the approximate time and location of the depletion onset. This study corroborates the fact that TEC depletions and radar plumes coincide with intense levels of GPS scintillations. Bottomside radar traces do not seem to be associated with GPS scintillations. It is demonstrated that scintillations/depletions can occur when the TEC latitude profiles are symmetric, asymmetric or highly asymmetric; this is during the absence of one crest. Comparison of the location of the northern crest of the equatorial anomaly and the maximum latitude of scintillations reveals that for 90% of the days, scintillations are confined within the boundaries of the 50% decay limit of the anomaly crests. The crests of the anomaly are the regions where the most intense GPS scintillations and the deepest TEC depletions are encountered. In accord with early results, we observe that GPS scintillations/TEC depletions mainly occur when the altitude of the magnetic equator F-region is above 500km. Nevertheless, in many instances GPS scintillations and TEC depletions are observed to exist when the F-layer is well below 500km or to persist when the F-layer undergoes its typical nighttime descent. Close inspection of the TEC profiles during scintillations/depletions events that occur when the equatorial F-layer peak is below 500km altitude reveals that on these occasions the ratio of the crest-to-equator TEC is above 2, and the crests are displaced 10° or more from the magnetic equator. When the equatorial F-layer is above 500km, neither of the two requirements is needed, as the flux tube seems to be inherently unstable. We discuss these findings in terms of the Rayleigh-Taylor instability (RTI) mechanism for flux-tube integrated quantities. We advance the idea that the seeming control that the reverse fountain effect exerts on inhibiting or suppressing GPS scintillations may be related to the redistribution of the density and plasma transport from the crests of the anomaly toward the equatorial region and then to much lower altitudes, and the simultaneous decrease of the F-region altitude. These two effects originate a decrease in the crest/trough ratio and a reduction of the crests separation, making the whole flux tube more stable to the RTI. The correspondence between crest separation, altitude of the equatorial F-region, the onset of depletions, and the altitude (latitude) extension of plumes (GPS scintillations) can be used to track the fate of the density structures

    Coevolution of religious and political authority in Austronesian societies

    Get PDF
    Authority, an institutionalized form of social power, is one of the defining features of the large-scale societies that evolved during the Holocene. Religious and political authority have deep histories in human societies and are clearly interdependent, but the nature of their relationship and its evolution over time is contested. We purpose-built an ethnographic dataset of 97 Austronesian societies and used phylogenetic methods to address two long-standing questions about the evolution of religious and political authority: first, how these two institutions have coevolved, and second, whether religious and political authority have tended to become more or less differentiated. We found evidence for mutual interdependence between religious and political authority but no evidence for or against a long-term pattern of differentiation or unification in systems of religious and political authority. Our results provide insight into how political and religious authority have worked synergistically over millennia during the evolution of large-scale societies

    Willingness to Engage in Collective Action After the Killing of an Unarmed Black Man: Differential Pathways for Black and White Individuals

    Get PDF
    This cross-sectional survey study examined the underlying psychosocial constructs of Black (n = 163) and White (n = 246) university students\u27 willingness to endorse racially motivated collective action. Consistent with the defensive motivation system model, we expected the police shooting of an unarmed Black American to activate concerns about personal safety, thereby eliciting negative affect, lack of forgiveness of the perpetrator, and motivation to engage in collective action. This path model was expected for both Black and White participants, with stronger associations among Black participants. In the full model, Black participants identified more with the victim and indicated greater personal threat, which led to (1) more negative affect and greater endorsement of collective action and (2) greater avoidance of the shooter and greater endorsement of collective action. In the Black participants model, collective action was explained by identifying with the victim and feeling personally threatened. In the White participants model, collective action was explained by three pathways stemming from identifying with the victim and personal threat, including negative affect, seeking avoidance, and seeking revenge. The results indicate different mechanisms to explain Black and White individuals\u27 motivation to endorse collective action to prevent police-involved shootings of unarmed Black Americans

    Antimicrobial Activity Does Not Predict Cytokine Response to Adrenomedullin or Its Shortened Derivatives

    Get PDF
    The aim of this study was to investigate cytokine release from oral keratinocytes and fibroblasts in response to AM and shortened derivatives previously characterised in terms of their antimicrobial activities. Cells were incubated with AM or its fragments (residues 1-12, 1-21, 13-52, 16-21, 16-52, 22-52, 26-52, and 34-52), and culture supernatants collected after 1, 2, 4, 8, and 24 hours. A time-dependant increase in production of interleukin1-α and interleukin 1-β from keratinocytes in response to all peptides was demonstrated. However, exposure to fragments compared to whole AM resulted in reduced production of these cytokines (60% mean reduction at 24 hours, P<.001). No consistent differences were shown between the cytokine response elicited by antimicrobial and nonantimicrobial fragments. The production of interleukin-6 and interleukin-8 did not change significantly with time or peptide used. Fibroblast cells were relatively unresponsive to all treatments. This study demonstrates that antimicrobial activity does not predict cytokine response to adrenomedullin or its shortened derivatives

    Intramolecular acyl migration in adenosine derivatives.

    Full text link
    corecore