2,431 research outputs found

    Charge trapping in polymer transistors probed by terahertz spectroscopy and scanning probe potentiometry

    Full text link
    Terahertz time-domain spectroscopy and scanning probe potentiometry were used to investigate charge trapping in polymer field-effect transistors fabricated on a silicon gate. The hole density in the transistor channel was determined from the reduction in the transmitted terahertz radiation under an applied gate voltage. Prolonged device operation creates an exponential decay in the differential terahertz transmission, compatible with an increase in the density of trapped holes in the polymer channel. Taken in combination with scanning probe potentionmetry measurements, these results indicate that device degradation is largely a consequence of hole trapping, rather than of changes to the mobility of free holes in the polymer.Comment: 4 pages, 3 figure

    Optimal Population Codes for Space: Grid Cells Outperform Place Cells

    Get PDF
    Rodents use two distinct neuronal coordinate systems to estimate their position: place fields in the hippocampus and grid fields in the entorhinal cortex. Whereas place cells spike at only one particular spatial location, grid cells fire at multiple sites that correspond to the points of an imaginary hexagonal lattice. We study how to best construct place and grid codes, taking the probabilistic nature of neural spiking into account. Which spatial encoding properties of individual neurons confer the highest resolution when decoding the animal’s position from the neuronal population response? A priori, estimating a spatial position from a grid code could be ambiguous, as regular periodic lattices possess translational symmetry. The solution to this problem requires lattices for grid cells with different spacings; the spatial resolution crucially depends on choosing the right ratios of these spacings across the population. We compute the expected error in estimating the position in both the asymptotic limit, using Fisher information, and for low spike counts, using maximum likelihood estimation. Achieving high spatial resolution and covering a large range of space in a grid code leads to a trade-off: the best grid code for spatial resolution is built of nested modules with different spatial periods, one inside the other, whereas maximizing the spatial range requires distinct spatial periods that are pairwisely incommensurate. Optimizing the spatial resolution predicts two grid cell properties that have been experimentally observed. First, short lattice spacings should outnumber long lattice spacings. Second, the grid code should be self-similar across different lattice spacings, so that the grid field always covers a fixed fraction of the lattice period. If these conditions are satisfied and the spatial “tuning curves” for each neuron span the same range of firing rates, then the resolution of the grid code easily exceeds that of the best possible place code with the same number of neurons

    Mesoscopic order and the dimentionality of long-range resonance energy transfer in supramolecular semiconductors

    Get PDF
    We present time-resolved photoluminescence measurements on two series of oligo-p-phenylenevinylene materials that self-assemble into supramolecular nanostructures with thermotropic reversibility in dodecane. One set of derivatives form chiral, helical stacks while the second set form less organised, frustrated stacks. Here we study the effects of supramolecular organisation on the resonance energy transfer rates. We measure these rates in nanoassemblies formed with mixed blends of oligomers and compare them with the rates predicted by Foerster theory. Our results and analysis show that control of supramolecular order in the nanometre lengthscale has a dominant effect on the efficiency and dimentionality of resonance energy transfer.Comment: 17 Pages, 5 Figures, Submitted to J. Chem. Phy

    Demonstration and characterization of α-human atrial natriuretic factor in human plasma

    Get PDF
    AbstractThis paper describes a highly specific and sensitive radioimmunoassay for α-human atrial natriuretic factor (α-hANF), the C-terminal 28-amino-acid residue portion of human prepro-ANF in human plasma. A novel extraction and prepurification procedure allowed for detection of levels of immunoreactive-α-hANF as low as 0.5 fmolml. In normotensive subjects, levels in the range 1–23 fmolml (mean = 8.9 fmolml) were found. Combined gel permeation and HPLC analysis demonstrated that this ir-α-hANF was comprised virtually exclusively of authentic 28-residue β-hANF. No evidence for occurrence of larger precursor forms in human plasma was acquired. A heterogenous group of hypertensive patients displayed considerably higher levels (mean = 62.2 fmolml), of interest in view of the hypotensive properties of ANF.Atrial natriuretic factorHuman plasmaExtractionChromatographie characterizationHypertensio

    Lorentz angle measurements in irradiated silicon detectors between 77 K and 300 K

    Get PDF
    Future experiments are using silicon detectors in a high radiation environment and in high magnetic fields. The radiation tolerance of silicon improves by cooling it to temperatures below 180 K. At low temperatures the mobility increases, which leads to larger deflections of the charge carriers by the Lorentz force. A good knowledge of the Lorentz angle is needed for design and operation of silicon detectors. We present measurements of the Lorentz angle between 77 K and 300 K before and after irradiation with a primary beam of 21 MeV protons.Comment: 13 pages, 9 figures, submitted to ICHEP2000, Osaka, Japa

    Distances sets that are a shift of the integers and Fourier basis for planar convex sets

    Get PDF
    The aim of this paper is to prove that if a planar set AA has a difference set Δ(A)\Delta(A) satisfying Δ(A)Z++s\Delta(A)\subset \Z^++s for suitable ss than AA has at most 3 elements. This result is motivated by the conjecture that the disk has not more than 3 orthogonal exponentials. Further, we prove that if AA is a set of exponentials mutually orthogonal with respect to any symmetric convex set KK in the plane with a smooth boundary and everywhere non-vanishing curvature, then # (A \cap {[-q,q]}^2) \leq C(K) q where C(K)C(K) is a constant depending only on KK. This extends and clarifies in the plane the result of Iosevich and Rudnev. As a corollary, we obtain the result from \cite{IKP01} and \cite{IKT01} that if KK is a centrally symmetric convex body with a smooth boundary and non-vanishing curvature, then L2(K)L^2(K) does not possess an orthogonal basis of exponentials

    Noncommutative Figa-Talamanca-Herz algebras for Schur multipliers

    Full text link
    We introduce a noncommutative analogue of the Fig\'a-Talamanca-Herz algebra Ap(G)A_p(G) on the natural predual of the operator space Mp,cb\frak{M}_{p,cb} of completely bounded Schur multipliers on Schatten space SpS_p. We determine the isometric Schur multipliers and prove that the space Mp\frak{M}_{p} of bounded Schur multipliers on Schatten space SpS_p is the closure in the weak operator topology of the span of isometric multipliers.Comment: 24 pages; corrected typo

    Probing the shape of atoms in real space

    Get PDF
    The structure of single atoms in real space is investigated by scanning tunneling microscopy. Very high resolution is possible by a dramatic reduction of the tip-sample distance. The instabilities which are normally encountered when using small tip-sample distances are avoided by oscillating the tip of the scanning tunneling microscope vertically with respect to the sample. The surface atoms of Si(111)-(7 x 7) with their well-known electronic configuration are used to image individual samarium, cobalt, iron and silicon atoms. The resulting images resemble the charge density corresponding to 4f, 3d and 3p atomic orbitals.Comment: Submitted to Phys. Rev. B, 17 pages, 7 figure
    corecore