2,794 research outputs found

    Market integration for Chilean wheat prices using Vector Error Correction Models (VECM), a cointegration analysis

    Get PDF
    Diaz, J (Diaz, Jose). Univ Talca, Fac Agron, Dept Agr Econ, Talca, ChileMarket integration for Chilean wheat prices using vector error correction models (VECM), a cointegration analysis. Cien. Inv. Agr. 38(1): 5-14. Historically Chile has been a wheat net importer country. This situation, added to the small size of its economy, causes that the domestic price of this cereal is highly influenced by import prices of substitute wheat. This research analyzed the integration level of the Chilean wheat market with respect to the USA and Argentinean markets using a vector error correction model (VECM), the impact of the band prices (D-BAND) and the change of the band mechanism introduced in 2004 (D-MECH) by the inclusion of two binary variables in the VECM. The results showed strong market integration among Argentina, Chile and USA, with USA leading the market. Additionally, the price of the Chilean wheat was influenced by the USA and Argentina prices. The binary variables, included in the models, showed that this system had been useful to protect the domestic market by reducing the fluctuations of the wheat prices (D-BAND), and the new mechanism performs as a protection over the international fluctuations (D-MECH). Both coefficients presented non-significative values, probably due to the difference among the input cost and the domestic price support mechanism, the sub-valuated commodities markets, increment on cereal price levels, inflationary scenarios and low number of observations

    Draft Genome Sequence of a Multi-Metal Resistant Bacterium Pseudomonas putida ATH-43 Isolated from Greenwich Island, Antarctica

    Get PDF
    Indexación: Web of Science; Scopus.In this report we present the first draft genome sequence of a P. putida strain isolated from the Antarctic continent. The shotgun sequencing strategy, assembly, and subsequent annotation showed that the ATH-43 strain possesses a wide spectrum of genetic determinants involved in heavy metal and antibiotic resistance, apparently to cope with extreme oxidative stress conditions. P. putida ATH-43 genome now forms part of the 65 genomes of this species registered at the NCBI database (September, 2016) and it is highly related with the endophytic strain P. putida W619, which is also resistant to several heavy metals. Further characterization of multi-metal resistant psychrotrophic bacteria such as P. putida ATH-43 will be promising to develop novel strategies for heavy metal bioremediation in low temperature environments. All genome data has been submitted to NCBI.http://journal.frontiersin.org/article/10.3389/fmicb.2016.01777/ful

    Search for gravitational wave ringdowns from perturbed intermediate mass black holes in LIGO-Virgo data from 2005–2010

    Get PDF
    We report results from a search for gravitational waves produced by perturbed intermediate mass black holes (IMBH) in data collected by LIGO and Virgo between 2005 and 2010. The search was sensitive to astrophysical sources that produced damped sinusoid gravitational wave signals, also known as ringdowns, with frequency 50 ≤ f0=Hz ≤ 2000 and decay timescale 0.0001 ≲ τ=s ≲ 0.1 characteristic of those produced in mergers of IMBH pairs. No significant gravitational wave candidate was detected. We report upper limits on the astrophysical coalescence rates of IMBHs with total binary mass 50 ≤ M=M⊙ ≤ 450 and component mass ratios of either 1:1 or 4:1. For systems with total mass 100 ≤ M=M⊙ ≤ 150, we report a 90% confidence upper limit on the rate of binary IMBH mergers with nonspinning and equal mass components of 6.9 × 10−8 Mpc−3 yr−1. We also report a rate upper limit for ringdown waveforms from perturbed IMBHs, radiating 1% of their mass as gravitational waves in the fundamental, l ¼ m ¼ 2, oscillation mode, that is nearly three orders of magnitude more stringent than previous results

    Search for Gravitational Waves Associated with γ-ray Bursts Detected by the Interplanetary Network

    Get PDF
    We present the results of a search for gravitational waves associated with 223 γ-ray bursts (GRBs) detected by the InterPlanetary Network (IPN) in 2005–2010 during LIGO’s fifth and sixth science runs and Virgo’s first, second, and third science runs. The IPN satellites provide accurate times of the bursts and sky localizations that vary significantly from degree scale to hundreds of square degrees. We search for both a well-modeled binary coalescence signal, the favored progenitor model for short GRBs, and for generic, unmodeled gravitational wave bursts. Both searches use the event time and sky localization to improve the gravitational wave search sensitivity as compared to corresponding all-time, all-sky searches. We find no evidence of a gravitational wave signal associated with any of the IPN GRBs in the sample, nor do we find evidence for a population of weak gravitational wave signals associated with the GRBs. For all IPN-detected GRBs, for which a sufficient duration of quality gravitational wave data are available, we place lower bounds on the distance to the source in accordance with an optimistic assumption of gravitational wave emission energy of 10−2M⊙c2 at 150 Hz, and find a median of 13 Mpc. For the 27 short-hard GRBs we place 90% confidence exclusion distances to two source models: a binary neutron star coalescence, with a median distance of 12 Mpc, or the coalescence of a neutron star and black hole, with a median distance of 22 Mpc. Finally, we combine this search with previously published results to provide a population statement for GRB searches in first-generation LIGO and Virgo gravitational wave detectors and a resulting examination of prospects for the advanced gravitational wave detectors

    First all-sky search for continuous gravitational waves from unknown sources in binary systems

    Get PDF
    We present the first results of an all-sky search for continuous gravitational waves from unknown spinning neutron stars in binary systems using LIGO and Virgo data. Using a specially developed analysis program, the TwoSpect algorithm, the search was carried out on data from the sixth LIGO science run and the second and third Virgo science runs. The search covers a range of frequencies from 20 Hz to 520 Hz, a range of orbital periods from 2 to ∼2; 254 h and a frequency- and period-dependent range of frequency modulation depths from 0.277 to 100 mHz. This corresponds to a range of projected semimajor axes of the orbit from ∼0.6 × 10−3 ls to ∼6; 500 ls assuming the orbit of the binary is circular. While no plausible candidate gravitational wave events survive the pipeline, upper limits are set on the analyzed data. The most sensitive 95% confidence upper limit obtained on gravitational wave strain is 2.3 × 10−24 at 217 Hz, assuming the source waves are circularly polarized. Although this search has been optimized for circular binary orbits, the upper limits obtained remain valid for orbital eccentricities as large as 0.9. In addition, upper limits are placed on continuous gravitational wave emission from the low-mass x-ray binary Scorpius X-1 between 20 Hz and 57.25 Hz

    Methods and results of a search for gravitational waves associated with gamma-ray bursts using the GEO 600, LIGO, and Virgo detectors

    Get PDF
    In this paper we report on a search for short-duration gravitational wave bursts in the frequency range 64 Hz–1792 Hz associated with gamma-ray bursts (GRBs), using data from GEO 600 and one of the LIGO or Virgo detectors. We introduce the method of a linear search grid to analyze GRB events with large sky localization uncertainties, for example the localizations provided by the Fermi Gamma-ray Burst Monitor (GBM). Coherent searches for gravitational waves (GWs) can be computationally intensive when the GRB sky position is not well localized, due to the corrections required for the difference in arrival time between detectors. Using a linear search grid we are able to reduce the computational cost of the analysis by a factor of Oð10Þ for GBM events. Furthermore, we demonstrate that our analysis pipeline can improve upon the sky localization of GRBs detected by the GBM, if a high-frequency GW signal is observed in coincidence. We use the method of the linear grid in a search for GWs associated with 129 GRBs observed satellitebased gamma-ray experiments between 2006 and 2011. The GRBs in our sample had not been previously analyzed for GW counterparts. A fraction of our GRB events are analyzed using data from GEO 600 while the detector was using squeezed-light states to improve its sensitivity; this is the first search for GWs using data from a squeezed-light interferometric observatory. We find no evidence for GW signals, either with any individual GRB in this sample or with the population as a whole. For each GRB we place lower bounds on the distance to the progenitor, under an assumption of a fixed GWemission energy of 10−2M⊙c2, with a median exclusion distance of 0.8 Mpc for emission at 500 Hz and 0.3 Mpc at 1 kHz. The reduced computational cost associated with a linear search grid will enable rapid searches for GWs associated with Fermi GBM events once the advanced LIGO and Virgo detectors begin operation

    Improved Upper Limits on the Stochastic Gravitational-Wave Background from 2009–2010 LIGO and Virgo Data

    Get PDF
    Gravitational waves from a variety of sources are predicted to superpose to create a stochastic background. This background is expected to contain unique information from throughout the history of the Universe that is unavailable through standard electromagnetic observations, making its study of fundamental importance to understanding the evolution of the Universe. We carry out a search for the stochastic background with the latest data from the LIGO and Virgo detectors. Consistent with predictions from most stochastic gravitational-wave background models, the data display no evidence of a stochastic gravitational-wave signal. Assuming a gravitational-wave spectrum of ΩGWðfÞ ¼ Ωαðf=fref Þα, we place 95% confidence level upper limits on the energy density of the background in each of four frequency bands spanning 41.5–1726 Hz. In the frequency band of 41.5–169.25 Hz for a spectral index of α ¼ 0, we constrain the energy density of the stochastic background to be ΩGWðfÞ \u3c 5.6 × 10−6. For the 600–1000 Hz band, ΩGWðfÞ \u3c 0.14ðf=900 HzÞ3, a factor of 2.5 lower than the best previously reported upper limits. We find ΩGWðfÞ \u3c 1.8 × 10−4 using a spectral index of zero for 170–600 Hz and ΩGWðfÞ \u3c 1.0ðf=1300 HzÞ3 for 1000–1726 Hz, bands in which no previous direct limits have been placed. The limits in these four bands are the lowest direct measurements to date on the stochastic background. We discuss the implications of these results in light of the recent claim by the BICEP2 experiment of the possible evidence for inflationary gravitational waves

    Harnessing high density lipoproteins to block transforming growth factor beta and to inhibit the growth of liver tumor metastases

    Get PDF
    Transforming growth factor β (TGF-β) is a powerful promoter of cancer progression and a key target for antitumor therapy. As cancer cells exhibit active cholesterol metabolism, high density lipoproteins (HDLs) appear as an attractive delivery system for anticancer TGFβ-inhibitory molecules. We constructed a plasmid encoding a potent TGF-β-blocking peptide (P144) linked to apolipoprotein A-I (ApoA-I) through a flexible linker (pApoLinkerP144). The ApoLinkerP144 sequence was then incorporated into a hepatotropic adeno-associated vector (AAVApoLinkerP144). The aim was to induce hepatocytes to produce HDLs containing a modified ApoA-I capable of blocking TGF-β. We observed that transduction of the murine liver with pApoLinkerP144 led to the appearance of a fraction of circulating HDL containing the fusion protein. These HDLs were able to attenuate TGF-β signaling in the liver and to enhance IL-12 -mediated IFN-γ production. Treatment of liver metastasis of MC38 colorectal cancer with AAVApoLinkerP144 resulted in a significant reduction of tumor growth and enhanced expression of IFN-γ and GM-CSF in cancerous tissue. ApoLinkerP144 also delayed MC38 liver metastasis in Rag2-/-IL2rγ-/- immunodeficient mice. This effect was associated with downregulation of TGF-β target genes essential for metastatic niche conditioning. Finally, in a subset of ret transgenic mice, a model of aggressive spontaneous metastatic melanoma, AAVApoLinkerP144 delayed tumor growth in association with increased CD8+ T cell numbers in regional lymph nodes. In conclusion, modification of HDLs to transport TGF-β-blocking molecules is a novel and promising approach to inhibit the growth of liver metastases by immunological and non-immunological mechanisms

    Modelling low velocity impact induced damage in composite laminates

    Get PDF
    The paper presents recent progress on modelling low velocity impact induced damage in fibre reinforced composite laminates. It is important to understand the mechanisms of barely visible impact damage (BVID) and how it affects structural performance. To reduce labour intensive testing, the development of finite element (FE) techniques for simulating impact damage becomes essential and recent effort by the composites research community is reviewed in this work. The FE predicted damage initiation and propagation can be validated by Non Destructive Techniques (NDT) that gives confidence to the developed numerical damage models. A reliable damage simulation can assist the design process to optimise laminate configurations, reduce weight and improve performance of components and structures used in aircraft construction

    Modelling low velocity impact induced damage in composite laminates

    Get PDF
    The paper presents recent progress on modelling low velocity impact induced damage in fibre reinforced composite laminates. It is important to understand the mechanisms of barely visible impact damage (BVID) and how it affects structural performance. To reduce labour intensive testing, the development of finite element (FE) techniques for simulating impact damage becomes essential and recent effort by the composites research community is reviewed in this work. The FE predicted damage initiation and propagation can be validated by Non Destructive Techniques (NDT) that gives confidence to the developed numerical damage models. A reliable damage simulation can assist the design process to optimise laminate configurations, reduce weight and improve performance of components and structures used in aircraft construction
    • …
    corecore